日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿(mǎn)分14分)

                   已知函數(shù)

                   (Ⅰ)當(dāng)時(shí),求函數(shù)的圖象在處的切線(xiàn)方程;

                   (Ⅱ)判斷函數(shù)的單調(diào)性;

                   (Ⅲ)若函數(shù)上為增函數(shù),求的取值范圍.

           

          【答案】

          (Ⅰ)

          (Ⅱ)當(dāng)時(shí),函數(shù)單調(diào)遞增;

          當(dāng)時(shí),函數(shù)單調(diào)遞減,在上單調(diào)遞增.

          (Ⅲ)

          【解析】(I)當(dāng)a=2時(shí),先求出的值,即切線(xiàn)的斜率,然后寫(xiě)出點(diǎn)斜式方程,再化成一般式即可.

          (II)先求導(dǎo),可得,然后再對(duì)和a<0兩種情況進(jìn)行討論研究其單調(diào)性.

          (III)本小題轉(zhuǎn)化為上恒成立,也可考慮求出f(x)的增區(qū)間D,然后根據(jù)求解也可.

          (Ⅰ)當(dāng)時(shí),),········································· 1分

          ,···································································· 2分

          ,所以所求的切線(xiàn)的斜率為3.······················································· 3分

          又∵,所以切點(diǎn)為.

           故所求的切線(xiàn)方程為:.······································································· 4分

          (Ⅱ)∵,

          ······························································· 5分

          ①當(dāng)時(shí),∵,∴;····························································· 6分

          ②當(dāng)時(shí),

          ,得;由,得;·························· 8分

          綜上,當(dāng)時(shí),函數(shù)單調(diào)遞增;

          當(dāng)時(shí),函數(shù)單調(diào)遞減,在上單調(diào)遞增.········ 9分

          (Ⅲ)①當(dāng)時(shí),由(Ⅱ)可知,函數(shù)單調(diào)遞增.此時(shí),,故上為增函數(shù).······································································································· 11分

          ②當(dāng)時(shí),由(Ⅱ)可知,函數(shù)上單調(diào)遞增.

          ∵ 上為增函數(shù),

          ∴ ,故,解得,

          ∴ .······························································································ 13分

          綜上所述,的取值范圍為.                      14分

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•廣東模擬)(本小題滿(mǎn)分14分 已知函數(shù)f(x)=
          3
          sin2x+2sin(
          π
          4
          +x)cos(
          π
          4
          +x)

          (I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
          (II)當(dāng)x∈[0,
          π
          2
          ]  時(shí),求函數(shù)f(x)
          的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿(mǎn)分14分)設(shè)橢圓C1的方程為(ab>0),曲線(xiàn)C2的方程為y=,且曲線(xiàn)C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

          (本小題滿(mǎn)分14分)
          已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
          (1)證明:數(shù)列}是等比數(shù)列;
          (2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
          (3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

           (本小題滿(mǎn)分14分)

          某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.

          (Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;

          (Ⅱ)求該商品第7天的利潤(rùn);

          (Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿(mǎn)分14分)已知的圖像在點(diǎn)處的切線(xiàn)與直線(xiàn)平行.

          ⑴ 求,滿(mǎn)足的關(guān)系式;

          ⑵ 若上恒成立,求的取值范圍;

          ⑶ 證明:

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案