日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義:如果函數(shù)y=f(x)(x∈D)滿足(1)f(x)在D上是單調函數(shù);(2)存在閉區(qū)間|a,b|⊆D,使f(x)在區(qū)間[a,b]上值域也是[a,b],則稱f(x)為閉函數(shù),則下列函數(shù):
          (1)f(x)=x2+2x,x∈[-1,+∞);(2)f(x)=x3,x∈[-2,3];(3)f(x)=lgx,x∈[1,+∝)
          其中是閉函數(shù)的是
          (1)(2)
          (1)(2)
          .(只填序號)
          分析:利用閉函數(shù)的定義,對于(1)(2)(3)單調性顯然,關鍵是找出閉區(qū)間,使得結論成立.
          解答:解:(1)f(x)=(x+1)2-1,對稱軸為x=-1,存在閉區(qū)間[-1,1],顯然滿足,故是閉函數(shù);(2)f(x)=x3,在x∈[-2,3]上是單調增函數(shù).存在閉區(qū)間[-1,1],故是閉函數(shù);(3)f(x)=lgx,x∈[1,+∝)是單調增函數(shù),由于x=lgx有且只有一解,故不滿足存在閉區(qū)間|a,b|⊆D,使f(x)在區(qū)間[a,b]上值域也是[a,b]
          故答案是:(1)(2)
          點評:這是個知識遷移題,這類問題一般是考查學生的類比猜想能力、探索問題的能力.這類問題是近年高考命題的一個亮點,很能考查學生的分析問題、探索問題的潛在的能力.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          定義:如果函數(shù)y=f(x)在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=
          f(b)-f(a)b-a
          ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.如y=x4是[-1,1]上的平均值函數(shù),0就是它的均值點.現(xiàn)有函數(shù)f(x)=-x2+mx+1是區(qū)間[-1,1]上的平均值函數(shù),則實數(shù)m的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          定義:如果函數(shù)y=f(x)在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=
          f(b)-f(a)b-a
          ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.如y=x4是[-1,1]上的平均值函數(shù),0就是它的均值點.
          (1)判斷函數(shù)f(x)=-x2+4x在區(qū)間[0,9]上是否為平均值函數(shù)?若是,求出它的均值點;若不是,請說明理由;
          (2)若函數(shù)f(x)=-x2+mx+1是區(qū)間[-1,1]上的平均值函數(shù),試確定實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          定義:如果函數(shù)y=f(x)在區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=
          f(b)-f(a)b-a
          ,則稱x0是函數(shù)y=f(x)在區(qū)間[a,b]上的一個均值點.已知函數(shù)f(x)=-x2+mx+1在區(qū)間[-1,1]上存在均值點,則實數(shù)m的取值范圍是
          (0,2)
          (0,2)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          定義:如果函數(shù)y=f(x)在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=數(shù)學公式,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.如y=x4是[-1,1]上的平均值函數(shù),0就是它的均值點.
          (1)判斷函數(shù)f(x)=-x2+4x在區(qū)間[0,9]上是否為平均值函數(shù)?若是,求出它的均值點;若不是,請說明理由;
          (2)若函數(shù)f(x)=-x2+mx+1是區(qū)間[-1,1]上的平均值函數(shù),試確定實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習冊答案