日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•金山區(qū)二模)如果(x+
          1
          x
          n(n∈N*)展開式中各項(xiàng)系數(shù)的和等于32,則展開式中第3項(xiàng)是
          10x2
          10x2
          分析:用賦值法求出展開式中各項(xiàng)系數(shù)和,列出方程解得n;再利用二項(xiàng)展開式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為1求出展開式中含x項(xiàng)的系數(shù).
          解答:解:令二項(xiàng)式中的x=1得展開式中各項(xiàng)系數(shù)和為2n
          ∵展開式中各項(xiàng)系數(shù)和為32,
          ∴2n=32,
          ∴n=5
          ∴(x+
          1
          x
          n=(x+
          1
          x
          5
          ∴(x+
          1
          x
          5的二項(xiàng)展開式中第3項(xiàng)是 T3=
          C
          2
          5
          x3(
          1
          x
          )
          2
          =10x2
          故答案為:10x2
          點(diǎn)評:本題考查求二項(xiàng)展開式中各項(xiàng)系數(shù)和的方法是賦值法;考查二項(xiàng)展開式的通項(xiàng)公式是解決二項(xiàng)展開式的特定項(xiàng)問題的工具.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•金山區(qū)二模)用數(shù)學(xué)歸納法證明1-
          1
          2
          +
          1
          3
          -
          1
          4
          +…+
          1
          2n-1
          -
          1
          2n
          =
          1
          n+1
          +
          1
          n+2
          +…+
          1
          2n
          (n∈N*),則從“n=k到n=k+1”,左邊所要添加的項(xiàng)是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•金山區(qū)二模)函數(shù)f(x)=sinπx的最小正周期是
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•金山區(qū)二模)已知f(x)為奇函數(shù),且當(dāng)x>0時f(x)=x(x-1),則f(-3)=
          -6
          -6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•金山區(qū)二模)函數(shù)y=lg(x2-2x+4)的單調(diào)遞減區(qū)間是
          (-∞,1),(端點(diǎn)1處不考慮開和閉)
          (-∞,1),(端點(diǎn)1處不考慮開和閉)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

          (2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
          材料:已知函數(shù)g(x)=-
          1
          f(x)
          ,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學(xué)給出了如下解答:
          解:令u=-f(x)=-x2-x,則u=-(x+
          1
          2
          2+
          1
          4
          ,
          當(dāng)x=-
          1
          2
          時,u有最大值,umax=
          1
          4
          ,顯然u沒有最小值,
          ∴當(dāng)x=-
          1
          2
          時,g(x)有最小值4,沒有最大值.
          請回答:上述解答是否正確?若不正確,請給出正確的解答;
          (3)設(shè)an=
          f(n)
          2n-1
          ,請?zhí)岢龃藛栴}的一個結(jié)論,例如:求通項(xiàng)an.并給出正確解答.
          注意:第(3)題中所提問題單獨(dú)給分,.解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

          查看答案和解析>>

          同步練習(xí)冊答案