日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}的前n項(xiàng)和為Sn,已知數(shù)學(xué)公式
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若數(shù)列{cn}滿足cn=數(shù)學(xué)公式,求數(shù)列{cn}的前n項(xiàng)和為Tn
          (3)張三同學(xué)利用第(2)題中的Tn設(shè)計(jì)了一個(gè)程序流程圖,但李四同學(xué)認(rèn)為這個(gè)程序如果被執(zhí)行會(huì)是一個(gè)“死循環(huán)”(即程序會(huì)永遠(yuǎn)循環(huán)下去,而無法束).你是否同意李四同學(xué)的觀點(diǎn)?請(qǐng)說明理由.

          解:(1)當(dāng)n=1時(shí),a1=S1=2;
          當(dāng)n>1時(shí),an=Sn-Sn-1=n+1,則…(4分)
          (2)當(dāng)n為偶數(shù)時(shí),
          當(dāng)n為奇數(shù)時(shí),n-1為偶數(shù),
          …(9分)
          (3)記dn=Tn-P
          當(dāng)n為偶數(shù)時(shí),
          dn+2-dn=2n+2-47
          ∴從第4項(xiàng)開始,數(shù)列{dn}的偶數(shù)項(xiàng)開始遞增,而d2,d4,…d10d都小于2005d12>2005
          ∴dn=2005(n為偶數(shù))
          當(dāng)n為奇數(shù)時(shí),,
          ∴從第5項(xiàng)開始,數(shù)列{dn}的偶數(shù)項(xiàng)開始遞增,而d1,d3…d11都小于2005,d3>2005
          則dn≠2005(n為奇數(shù))
          李四的觀點(diǎn)正確.(14分)
          分析:(1)由,令n=1,求得數(shù)列的首項(xiàng),再利用已知數(shù)列的前n項(xiàng)和與通項(xiàng)之間的關(guān)系,可求出數(shù)列的通項(xiàng);
          (2)數(shù)列數(shù)列{cn}滿足cn=,(k∈N*),利用分組求和求出數(shù)列cn的前n項(xiàng)的和;
          (3)記dn=Tn-P,當(dāng)n為偶數(shù)時(shí),,dn+2-dn=2n+2-47;n為奇數(shù)時(shí),,,分析即可求解.
          點(diǎn)評(píng):此題以程序圖為載體考查數(shù)列的性質(zhì)和應(yīng)用,考查了已知數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng),等比數(shù)列的定義及通項(xiàng)公式,還考查了學(xué)生分類討論的思想.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
          Tn
          ak
          (n,k∈N+,k≤n),則數(shù)列
          SnTn
          Tn(1)+Tn(2)+…+Tn(n)
          的前n項(xiàng)的和是
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          (用a1和q表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若數(shù)列{an}的通項(xiàng)an=
          1
          pn-q
          ,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
          (1)求證:當(dāng)n≥2時(shí),pan<an-1;
          (2)求證sn
          p
          (p-1)(p-q)
          (1-
          1
          pn
          )
          ;
          (3)若an=
          1
          (2n-1)(2n+1-1)
          ,求證sn
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
          a
          2
          n
          +an
          2
          ,n∈N*,
          (1)求證:{an}是等差數(shù)列;
          (2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
          1
          2
          ,
          1
          3
          2
          3
          ,
          1
          4
          ,
          2
          4
          3
          4
          ,
          1
          5
          2
          5
          ,
          3
          5
          4
          5
          …,
          1
          n
          ,
          2
          n
          ,…,
          n-1
          n
          ,…有如下運(yùn)算和結(jié)論:
          ①a24=
          3
          8
          ;
          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
          ③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為Tn=
          n2+n
          4
          ;
          ④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
          5
          7

          其中正確的結(jié)論是
          ①③④
          ①③④
          .(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出下列命題:
          ①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
          ②在△ABC中,如果A=60°,a=
          6
          ,b=4
          ,那么滿足條件的△ABC有兩解;
          ③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
          ④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
          其中真命題的序號(hào)是

          查看答案和解析>>

          同步練習(xí)冊(cè)答案