日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過統(tǒng)計(jì)繪制如圖,其中各項(xiàng)統(tǒng)計(jì)不重復(fù).若該市老年低收入家庭共有900戶,則下列說法錯(cuò)誤的是( 。

          A.該市總有 15000 戶低收入家庭

          B.在該市從業(yè)人員中,低收入家庭共有1800戶

          C.在該市無業(yè)人員中,低收入家庭有4350戶

          D.在該市大于18歲在讀學(xué)生中,低收入家庭有 800 戶

          【答案】D

          【解析】

          根據(jù)給出的統(tǒng)計(jì)圖表,對(duì)選項(xiàng)進(jìn)行逐一判斷,即可得到正確答案.

          解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%

          則該市總有低收入家庭900÷6%15000(戶),A正確,

          該市從業(yè)人員中,低收入家庭共有15000×12%1800(戶),B正確,

          該市無業(yè)人員中,低收入家庭有15000×29%%4350(戶),C正確,

          該市大于18 歲在讀學(xué)生中,低收入家庭有15000×4%600(戶),D錯(cuò)誤.

          故選:D.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時(shí)每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:

          0

          1

          2

          3

          4

          15

          12

          11

          9

          8

          (1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;

          (2)有一種植戶準(zhǔn)備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計(jì)劃收獲后能全部售出,價(jià)格為10元,如果收入(收入=產(chǎn)量×價(jià)格)不低于25000元,則的最大值是多少?

          (3)該種植基地在如圖所示的直角梯形地塊的每個(gè)交叉點(diǎn)(直線的交點(diǎn))處都種了一株該種水果,其中每個(gè)小正方形的邊長(zhǎng)和直角三角形的直角邊長(zhǎng)都為,已知該梯形地塊周邊無其他樹木影響,若從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測(cè)它的產(chǎn)量的分布列與數(shù)學(xué)期望.

          附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),曲線在點(diǎn)處的切線與軸、軸分別交于,兩點(diǎn),點(diǎn)是坐標(biāo)原點(diǎn),①;②的面積為定值;③曲線上存在兩點(diǎn),使得是等邊三角形;④曲線上存在兩點(diǎn)使得是等腰直角三角形,其中真命題的個(gè)數(shù)是( )

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的長(zhǎng)軸長(zhǎng)與焦距分別為方程的兩個(gè)實(shí)數(shù)根.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)若直線過點(diǎn)且與橢圓相交于,兩點(diǎn),是橢圓的左焦點(diǎn),當(dāng)面積最大時(shí),求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列命題:

          ①若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不變;

          ②在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;

          ③設(shè)隨機(jī)變量服從正態(tài)分布,若,則

          ④對(duì)分類變量的隨機(jī)變量的觀測(cè)值來說,越小,判斷“有關(guān)系”的把握越大.其中正確的命題序號(hào)是(

          A.①②B.①②③C.①③④D.②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐PABC中,ACBC,AB2BCD為線段AB上一點(diǎn),且AD3DBPD⊥平面ABC,PA與平面ABC所成的角為45°

          1)求證:平面PAB⊥平面PCD;

          2)求二面角PACD的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校為了解高二學(xué)生每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間,隨機(jī)抽取了高二男生和女生各50名進(jìn)行問卷調(diào)查,其中每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間超過3小時(shí)的學(xué)生稱為古文迷,否則為非古文迷,調(diào)查結(jié)果如下表:

          古文迷

          非古文迷

          合計(jì)

          男生

          26

          24

          50

          女生

          30

          20

          50

          合計(jì)

          56

          44

          100

          參考公式:,其中

          參考數(shù)據(jù):

          0.500

          0.400

          0.250

          0.050

          0.025

          0.010

          0.455

          0.708

          1.321

          3.841

          5.024

          6.635

          1)根據(jù)上表數(shù)據(jù)判斷能否有60%的把握認(rèn)為古文迷與性別有關(guān)?

          2)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行理科學(xué)習(xí)時(shí)間的調(diào)查,求所抽取的5人中古文迷非古文迷的人數(shù);

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線,的焦點(diǎn)為,過點(diǎn)的直線的斜率為,與拋物線交于,兩點(diǎn),拋物線在點(diǎn),處的切線分別為,,兩條切線的交點(diǎn)為

          1)證明:;

          2)若的外接圓與拋物線有四個(gè)不同的交點(diǎn),求直線的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時(shí)得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因?yàn)檎呛髢晌粩?shù)學(xué)家彼此獨(dú)立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:a2+b2)(c2+d2ac+bd2當(dāng)且僅當(dāng)adbc(即)時(shí)等號(hào)成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時(shí)x的值分別為(  )

          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案