日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知A、B是拋物線y2=4x上的相異兩點(diǎn).
          (1)設(shè)過點(diǎn)A且斜率為-1的直線l1,與過點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
          (2)問題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問題(1)作適當(dāng)推廣,并給予解答;
          (3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0>2,試用x0表示線段AB中點(diǎn)的橫坐標(biāo).

          解:(1)由解得A(16,-8);由解得B(0,0).
          由點(diǎn)斜式寫出兩條直線l1、l2的方程,l1:x+y-8=0;l2:x-y=0,所以直線AB的斜率為. …
          (2)推廣:已知拋物線y2=2px上有一定點(diǎn)P,過點(diǎn)P作斜率分別為k、-k的兩條直線l1、l2,分別交拋物線于A、B兩點(diǎn),試計(jì)算直線AB的斜率.
          過點(diǎn)P(x0,y0),斜率互為相反數(shù)的直線可設(shè)為y=k(x-x0)+y0,y=k(x-x0)+y0,其中y02=2px0
          得ky2-2py+2py0-ky02=0,所以
          同理,把上式中k換成-k得,所以
          當(dāng)P為原點(diǎn)時(shí)直線AB的斜率不存在,當(dāng)P不為原點(diǎn)時(shí)直線AB的斜率為
          (3)設(shè)A(x1,y1),B(x2,y2),則yi2=4xi(i=1,2).               …
          設(shè)線段AB的中點(diǎn)是M(xm,ym),斜率為k,則=,…(15分)
          線段AB的垂直平分線l的方程為,…
          又點(diǎn)Q(x0,0)在直線l上,所以,
          而ym≠0,于是xm=x0-2.故線段AB中點(diǎn)的橫坐標(biāo)為x0-2.   …
          分析:(1)根據(jù)題意將直線l1,直線l2,分別與拋物線方程聯(lián)立,求得點(diǎn)A,B的坐標(biāo),再利用斜率公式可求斜率;
          (2)推廣:已知拋物線y2=2px上有一定點(diǎn)P,過點(diǎn)P作斜率分別為k、-k的兩條直線l1、l2,分別交拋物線于A、B兩點(diǎn),試計(jì)算直線AB的斜率.再利用(1)的方法求得點(diǎn)A,B的坐標(biāo),從而利用斜率公式可求斜率;
          (3)先求出線段AB(不平行于y軸)的垂直平分線的方程,再確定其線段AB中點(diǎn)的橫坐標(biāo).
          點(diǎn)評(píng):本題的考點(diǎn)是直線與圓錐曲線的綜合問題,主要考查直線與拋物線的位置關(guān)系,考查斜率公式,有較強(qiáng)的綜合性
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A、B是拋物線y2=4x上的兩點(diǎn),O是拋物線的頂點(diǎn),OA⊥OB.
          (I)求證:直線AB過定點(diǎn)M(4,0);
          (II)設(shè)弦AB的中點(diǎn)為P,求點(diǎn)P到直線x-y=0的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A,B是拋物線x2=2py(p>0)上的兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),l為拋物線的準(zhǔn)線.
          (1)若過A點(diǎn)的拋物線的切線與y軸相交于C點(diǎn),求證:|AF|=|CF|;
          (2)若
          OA
          OB
          +p2=0
          (A、B異于原點(diǎn)),直線OB與過A且垂直于X軸的直線m相交于P點(diǎn),求P點(diǎn)軌跡方程;
          (3)若直線AB過拋物線的焦點(diǎn),分別過A、B點(diǎn)的拋物線的切線相交于點(diǎn)T,求證:
          AT
          BT
          =0
          ,并且點(diǎn)T在l上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•青浦區(qū)二模)(理)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
          (1)設(shè)過點(diǎn)A且斜率為-1的直線l1,與過點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
          (2)問題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問題(1)作適當(dāng)推廣,并給予解答;
          (3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0=5,試用線段AB中點(diǎn)的縱坐標(biāo)表示線段AB的長(zhǎng)度,并求出中點(diǎn)的縱坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•青浦區(qū)二模)(文)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
          (1)設(shè)過點(diǎn)A且斜率為-1的直線l1,與過點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
          (2)問題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問題(1)作適當(dāng)推廣,并給予解答;
          (3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0>2,試用x0表示線段AB中點(diǎn)的橫坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A,B是拋物線x2=2py(p>0)上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),非零向量
          OA
          , 
          OB
          滿足|
          OA
          +
          OB
          |=|
          OA
          -
          OB
          |

          (Ⅰ)求證:直線AB經(jīng)過一定點(diǎn);
          (Ⅱ)當(dāng)AB的中點(diǎn)到直線y-2x=0的距離的最小值為
          2
          5
          5
          時(shí),求p的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案