日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}滿足:an=log(n+1)(n+2),n∈N+,我們把使a1•a2•a3•…•ak為整數(shù)的數(shù)k(k∈N+)叫做數(shù)列{an}的理想數(shù).給出下列關(guān)于數(shù)列{an}的幾個(gè)結(jié)論:
          ①數(shù)列{an}的最小理想數(shù)是2;
          ②數(shù)列{an}的理想數(shù)k的形式可以表示為k=4n-2;
          ③在區(qū)間[1,2011]內(nèi){an}的所有理想數(shù)之和為2026;
          ④對(duì)任意的n∈N+,有an+1>an
          其中正確的序號(hào)為
           
          分析:an=logn+1(n+2)=
          log2(n+2)
          log2(n+1)
          ,知a1•a2•…•ak=log2(n+2).log2(n+2)為整數(shù)的最小的n=2,數(shù)列{an}的最小理想數(shù)是2.{an}的理想數(shù)k的形式可以表示為k=2n-1,先利用換底公式與疊乘法把a(bǔ)1•a2•a3…ak化為log2(k+2);然后根據(jù)a1•a2•a3…ak為整數(shù),可得k=2n-2;最后由等比數(shù)列前n項(xiàng)和公式解決問題.對(duì)任意n∈N*,有an+1<an.故正確結(jié)論的序號(hào)為①③.
          解答:解:an=logn+1(n+2)=
          log2(n+2)
          log2(n+1)

          ∴a1•a2•…•ak=log2(n+2).
          ∵k∈N*,∴l(xiāng)og2(n+2)為整數(shù)的最小的n=2,數(shù)列{an}的最小理想數(shù)是2.故①正確;
          {an}的理想數(shù)k的形式可以表示為k=2n-1,故②不成立;
          ∴k∈[1,2011]內(nèi)所有的幸運(yùn)數(shù)的和
          M=(22-2)+(23-2)+(24-2)+…+(210-2)
          =
          4(1-29)
          1-2
          -2×9=2026  (211-2>2011)
          故答案為2026.
          對(duì)任意n∈N*,有an+1<an.故③成立;
          lim
          n→+∞
          an
          =1,故④不成立.
          故正確答案為①③.
          故答案為:①③
          點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,本題在理解新定義的基礎(chǔ)上,考查換底公式、疊乘法及等比數(shù)列前n項(xiàng)和公式,其綜合性、技巧性是比較強(qiáng)的.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=1且an+1=
          3+4an
          12-4an
          , n∈N*

          (1)若數(shù)列{bn}滿足:bn=
          1
          an-
          1
          2
          (n∈N*)
          ,試證明數(shù)列bn-1是等比數(shù)列;
          (2)求數(shù)列{anbn}的前n項(xiàng)和Sn
          (3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足
          1
          2
          a1+
          1
          22
          a2+
          1
          23
          a3+…+
          1
          2n
          an=2n+1
          則{an}的通項(xiàng)公式
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
          (1)若a1=
          54
          ,求an;
          (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
          2n-1
          2n-1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案