【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關于的方程
有實數(shù)解,求實數(shù)
的取值范圍;
(3)求證:.
【答案】(1)在區(qū)間上
為增函數(shù);在區(qū)間
上
為減函數(shù).(2)
.(3)證明見解析.
【解析】分析:(1)由函數(shù)的解析式可得,則函數(shù)在區(qū)間
上為增函數(shù),在區(qū)間
上為減函數(shù);
(2)令,則
,
,而
,據(jù)此可得
.
(3)原不等式等價于.由(1)得
,令
,則
,據(jù)此即可證得題中的結(jié)論.
詳解:(1)函數(shù)定義域為
,
;
在區(qū)間上
,
為增函數(shù);
在區(qū)間上
,
為減函數(shù);
(2)令,
在區(qū)間,為
,
為減函數(shù);
在區(qū)間,為
,
為增函數(shù);
,
由(1)得,
若關于的方程
有實數(shù)解等價于
.
即:.
(3)原不等式等價于.
由(1)得,當且僅當
時取等號,
即,當且僅當
時取等號.
令,
,所以函數(shù)在
上為增函數(shù),
所以,即
,
由此得,即
.
科目:高中數(shù)學 來源: 題型:
【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時間情況,隨機抽取了某市名觀眾進行調(diào)查,其中有
名男觀眾和
名女觀眾,將這
名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在
分鐘以上(包括
分鐘)的稱為“朗讀愛好者”,收視時間在
分鐘以下(不包括
分鐘)的稱為“非朗讀愛好者”.規(guī)定只有女“朗讀愛好者”可以參加央視競選.
(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這
名觀眾中任選
名,求至少選到
名“朗讀愛好者”的概率;
(2)若從所有的“朗讀愛好者”中隨機抽取名,求抽到的
名觀眾中能參加央視競選的人數(shù)
的分布列及其數(shù)學期望
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:,
,
,
,
,
,
后得到如圖的頻率分
布直方圖.
(1)求圖中實數(shù)的值;
(2)若該校高一年級共有學生1000人,試估計該校高一年級期中考試數(shù)學成績不低于60分的人數(shù).
(3)若從樣本中數(shù)學成績在,
與
,
兩個分數(shù)段內(nèi)的學生中隨機選取2名學生,試用列舉法求這2名學生的數(shù)學成績之差的絕對值大于10的槪率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018 年1月16日,由新華網(wǎng)和中國財經(jīng)領袖聯(lián)盟聯(lián)合主辦的2017中國財經(jīng)年度人物評選結(jié)果揭曉,某知名網(wǎng)站財經(jīng)頻道為了解公眾對這些年度人物是否了解,利用網(wǎng)絡平臺進行了調(diào)查,并從參與調(diào)查者中隨機選出人,把這
人分為
兩類(
類表示對這些年度人物比較了解,
類表示對這些年度人物不太了解),并制成如下表格:
年齡段 |
|
|
|
|
人數(shù) | ||||
|
(1)若按照年齡段進行分層抽樣,從這人中選出
人進行訪談,并從這
人中隨機選出兩名幸運者給予獎勵.求其中一名幸運者的年齡在
歲~
歲之間,另一名幸運者的年齡在
歲~
歲之間的概率;(注:從
人中隨機選出
人,共有
種不同選法)
(2)如果把年齡在 歲~
歲之間的人稱為青少年,年齡在
歲~
歲之間的人稱為中老年,則能否在犯錯誤的概率不超過
的前提下認為青少年與中老年人在對財經(jīng)年度人物的了解程度上有差異?
參考數(shù)據(jù):
,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP
2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點N的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為1正方體中,點
,
分別為邊
,
的中點,將
沿
所在的直線進行翻折,將
沿
所在直線進行翻折,在翻折的過程中,下列說法錯誤的是( )
A. 無論旋轉(zhuǎn)到什么位置,、
兩點都不可能重合
B. 存在某個位置,使得直線與直線
所成的角為
C. 存在某個位置,使得直線與直線
所成的角為
D. 存在某個位置,使得直線與直線
所成的角為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線:
(
為參數(shù))和圓
的極坐標方程:
.
(1)分別求直線和圓
的普通方程并判斷直線
與圓
的位置關系;
(2)已知點,若直線
與圓
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的多面體中, AC⊥BC,四邊形ABED是正方形,平面ABED⊥平面ABC,點F,G,H分別為BD,EC,BE的中點,求證:
(1) BC⊥平面ACD
(2)平面HGF∥平面ABC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com