日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知A,B分別是直線y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2,D是AB的中點(diǎn).
          (1)求動(dòng)點(diǎn)D的軌跡C的方程;
          (2)若過(guò)點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,
          ①當(dāng)|PQ|=3時(shí),求直線l的方程;
          ②試問(wèn)在x軸上是否存在點(diǎn)E(m,0),使恒為定值?若存在,求出E點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由.
          【答案】分析:(1)設(shè)D(x,y),A(a,a),B(b,-b),然后根據(jù)線段AB的長(zhǎng)為2,D是AB的中點(diǎn)消去a與b,得到x與y的等量關(guān)系,即為動(dòng)點(diǎn)D的軌跡C的方程;
          (2)①討論直線l與x軸是否垂直,然后利用點(diǎn)到直線的距離公式建立等式關(guān)系,從而求出直線方程;
          ②討論直線l的斜率是否存在,不存在時(shí)直接求,存在時(shí),將直線與圓聯(lián)立方程組,消去y,然后設(shè)P(x1,y1),Q(x2,y2),將表示出來(lái),使其與k無(wú)關(guān)即可求出m的值.
          解答:解:(1)設(shè)D(x,y),A(a,a),B(b,-b),
          ∵D是AB的中點(diǎn),∴x=,y=,
          ∵|AB|=2,∴(a-b)2+(a+b)2=12,
          ∴(2y)2+(2x)2=12,∴點(diǎn)D的軌跡C的方程為x2+y2=3.
          (2)①當(dāng)直線l與x軸垂直時(shí),P(1,),Q(1,-),此時(shí)|PQ|=2,不符合題意;
          當(dāng)直線l與x軸不垂直時(shí),設(shè)直線l的方程為y=k(x-1),由于|PQ|=3,所以圓心C到直線l的距離為,
          =,解得k=±.故直線l的方程為y=±(x-1).
          ②當(dāng)直線l的斜率存在時(shí),設(shè)其斜率為k,則l的方程為y=k(x-1),
          由消去y得(k2+1)x2-2k2x+k2-3=0,
          設(shè)P(x1,y1),Q(x2,y2)則由韋達(dá)定理得x1+x2=,x1x2=,
          =(m-x1,-y1),=(m-x2,-y2),
          =(m-x1)(m-x2)+y1y2=m2-m(x1+x2)+x1x2+y1y2
          =m2-m(x1+x2)+x1x2+k2(x1-1)(x2-1)
          =m2-++k2 (-+1)=
          要使上式為定值須=1,解得m=1,∴為定值-2,
          當(dāng)直線l的斜率不存在時(shí)P(1,),Q(1,-),
          由E(1,0)可得=(0,-),=(0,),
          =-2,
          綜上所述當(dāng)E(1,0)時(shí),為定值-2.
          點(diǎn)評(píng):本題主要考查了向量在幾何中的應(yīng)用,以及軌跡問(wèn)題和直線和圓的方程的應(yīng)用,同時(shí)考查轉(zhuǎn)化的思想和計(jì)算的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知A、B分別是直線y=
          3
          3
          x
          y=-
          3
          3
          x
          上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
          3
          ,D是AB的中點(diǎn).
          (1)求動(dòng)點(diǎn)D的軌跡C的方程;
          (2)過(guò)點(diǎn)N(1,0)作與x軸不垂直的直線l,交曲線C于P、Q兩點(diǎn),若在線段ON上存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知A、B分別是直線y=
          3
          3
          x
          y=-
          3
          3
          x
          上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
          3
          ,P是AB的中點(diǎn).
          (1)求動(dòng)點(diǎn)P的軌跡C的方程;
          (2)過(guò)點(diǎn)Q(1,0)作直線l(與x軸不垂直)與軌跡C交于M、N兩點(diǎn),與y軸交于點(diǎn)R.若
          RM
          MQ
          RN
          NQ
          ,證明:λ+μ為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知A,B分別是直線y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
          3
          ,D是AB的中點(diǎn).
          (1)求動(dòng)點(diǎn)D的軌跡C的方程;
          (2)若過(guò)點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,
          ①當(dāng)|PQ|=3時(shí),求直線l的方程;
          ②設(shè)點(diǎn)E(m,0)是x軸上一點(diǎn),求當(dāng)
          PE
          QE
          恒為定值時(shí)E點(diǎn)的坐標(biāo)及定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知A,B分別是直線y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
          3
          ,D是AB的中點(diǎn).
          (1)求動(dòng)點(diǎn)D的軌跡C的方程;
          (2)若過(guò)點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,
          ①當(dāng)|PQ|=3時(shí),求直線l的方程;
          ②試問(wèn)在x軸上是否存在點(diǎn)E(m,0),使
          PE
          QE
          恒為定值?若存在,求出E點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知A、B分別是直線y=
          3
          3
          x
          y=-
          3
          3
          x
          上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
          3
          ,P是AB的中點(diǎn).
          (1)求動(dòng)點(diǎn)P的軌跡C的方程;
          (2)過(guò)點(diǎn)Q(1,0)任意作直線l(與x軸不垂直),設(shè)l與(1)中軌跡C交于M、N,與y軸交于R點(diǎn).若
          RM
          MQ
          RN
          NQ
          ,證明:λ+μ 為定值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案