日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文科)已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前項(xiàng)和為,且對(duì)于任意的,都有點(diǎn)(an,Sn)在直線y=2x-2上
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若bn=2log2an-1,求數(shù)列{
          bnan
          }
          的前n項(xiàng)和Tn
          分析:(1)由題意點(diǎn)(an,Sn)在直線y=2x-2上,可得Sn=2an-2,利用遞推公式 an=
          S1   n=1
          Sn-Sn-1,  n≥2
          可求an;
          (2)由(1)可求bn=2n-1,則數(shù)列bn為等差數(shù)列,而數(shù)列an為等比數(shù)列,
          bn
          an
          =
          2n-1
          2n
          =(2n-1)(
          1
          2
          )
          n
          適合用錯(cuò)位相減求和.
          解答:解:(1)由已知Sn=2an-2  ①,當(dāng)n≥2時(shí),Sn-1=2an-1-2 ②
          ①-②得Sn-Sn-1=2an-2an-1,即an=2an-2an-1,
          an
          an-1
          =2
          又n=1時(shí)有S1=2a1-2,得a1=2
          ∴{an}是首項(xiàng)a1=2,公比q=2的等比數(shù)列,
          故數(shù)列{an}的通項(xiàng)公式為:an=2n
          (2)由(1)知bn=2log2an-1=2log22n-1=2n-1,所以
          bn
          an
          =
          2n-1
          2n
          =(2n-1)(
          1
          2
          )n

          數(shù)列{
          bn
          an
          }
          的前n項(xiàng)和Tn=1×(
          1
          2
          )1+3×(
          1
          2
          )2+…+(2n-1)(
          1
          2
          )n
            ③
          ③式兩邊同乘以
          1
          2
          得,
          1
          2
          Tn=(
          1
          2
          )
          2
          +3×(
          1
          2
          )
          3
          +…+(2n-1)(
          1
          2
          )
          n+1
            ④
          ③-④得
          1
          2
          Tn=
          1
          2
          +2[(
          1
          2
          )2+(
          1
          2
          )3+…+(
          1
          2
          )n]
          -(2n-1)(
          1
          2
          )n+1

          =
          1
          2
          +
          1
          4
          [1-(
          1
          2
          )n-1]
          1-
          1
          2
          -(2n-1)(
          1
          2
          )n+1
          =
          3
          2
          -(
          1
          2
          )n-1-(2n-1)(
          1
          2
          )n+1

          =
          3
          2
          -(
          1
          2
          )n+1(4+2n-1)
          =
          3
          2
          -(
          1
          2
          )
          n+1
          (2n+3)

          故Tn=3-(2n+3)(
          1
          2
          )n
          點(diǎn)評(píng):本題考查數(shù)列的遞推公式的運(yùn)用、錯(cuò)位相減求和的運(yùn)用,該求和方法已知求和的熱點(diǎn)、難點(diǎn),運(yùn)用的關(guān)鍵是理解該方法的實(shí)質(zhì),掌握該求和的基本步驟.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱{an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
          [理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱{an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
          [理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

          定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱{an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
          [理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)專項(xiàng)復(fù)習(xí):創(chuàng)新題(3)(解析版) 題型:解答題

          定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱{an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
          [理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高考數(shù)學(xué)模擬專題訓(xùn)練:解答題(解析版) 題型:解答題

          定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱{an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
          [理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案