日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,CD=3,S△BCD=6,則梯形ABCD的面積為________,點A到BD的距離AH=________.

          8    
          分析:由題意通過三角形BCD的面積,求出BC,利用勾股定理求出BD,然后求出梯形的面積,求出三角形ABD面積,即可求出AH.
          解答:解:由題意在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,CD=3,S△BCD=6,可知,
          ,所以BC=4,
          所以BD=5,
          梯形ABCD的面積為:==8;
          △ABD的面積為:8-6=2,
          點A到BD的距離AH滿足:
          AH=
          故答案為:8;
          點評:本題考查平面幾何,解三角形問題,梯形與三角形面積的求法,考查計算能力.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
          2
          a.
          (Ⅰ)求證:平面SAB⊥平面SAD;
          (Ⅱ)設SB的中點為M,且DM⊥MC,試求出四棱錐S-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.點E、F分別是PC、BD的中點,現(xiàn)將△PDC沿CD折起,使PD⊥平面ABCD,
          (1)求證:EF∥平面PAD;
          (2)求點A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,動點P在BCD內(nèi)運動(含邊界),設
          AP
          AD
          AB
          ,則α+β的最大值是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P為CD的中點,則
          PA
          PB
          的值為
          5
          5

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分別為線段CD、AB上的點,且EF∥AD.將梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD與平面ADEF所成角正切值為
          2
          2

          (Ⅰ)求證:BC⊥平面BDE;
          (Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

          查看答案和解析>>

          同步練習冊答案