日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),

          (Ⅰ)記,試判斷函數(shù)的極值點(diǎn)的情況;

          (Ⅱ)若有且僅有兩個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.

          【答案】(Ⅰ)見解析;(Ⅱ)

          【解析】

          (Ⅰ)求導(dǎo)后可知的符號(hào)由的符號(hào)決定;根據(jù)的單調(diào)性,結(jié)合存在性定理可知存在唯一的,使得,從而得到得單調(diào)性,根據(jù)極值與單調(diào)性的關(guān)系可確定極值點(diǎn);(Ⅱ)將所求不等式化為;當(dāng)時(shí),根據(jù)(Ⅰ)的結(jié)論可驗(yàn)證出都有無窮多個(gè)整數(shù)解,不合題意;當(dāng)時(shí),若,由時(shí),可知無整數(shù)解,不合題意;若,可知,解不等式組求得結(jié)果.

          (Ⅰ)由得:

          設(shè),則上單調(diào)遞增

          ,

          存在唯一的,使得,即

          當(dāng)時(shí),;當(dāng)時(shí),

          上單調(diào)遞減;在上單調(diào)遞增

          的極小值點(diǎn),無極大值點(diǎn)

          (Ⅱ)由得:,即

          ①當(dāng)時(shí),恒成立,有無窮多個(gè)整數(shù)解,不合題意

          ②當(dāng)時(shí),,

          , 當(dāng)時(shí),由(Ⅰ)知:

          有無窮多個(gè)整數(shù)解,即有無窮多個(gè)整數(shù)解,不合題意

          ③當(dāng)時(shí),

          i.當(dāng)時(shí),,又

          兩個(gè)整數(shù)解為:

          ,解得:

          ii.當(dāng)時(shí),

          當(dāng)時(shí),由(Ⅰ)知: 無整數(shù)解,不合題意

          綜上所述:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

          (1)求的普通方程及的直角坐標(biāo)方程;

          (2)若曲線與曲線分別交于點(diǎn),,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,設(shè)拋物線的準(zhǔn)線軸交于橢圓的右焦點(diǎn)的左焦點(diǎn).橢圓的離心率為,拋物線與橢圓交于軸上方一點(diǎn),連接并延長其交于點(diǎn), 上一動(dòng)點(diǎn),且在之間移動(dòng).

          (1)當(dāng)取最小值時(shí),求的方程;

          (2)若的邊長恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)面積取最大值時(shí),求面積最大值以及此時(shí)直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          (2)當(dāng)時(shí),若函數(shù)的兩個(gè)極值點(diǎn)分別為、,證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)若曲線x1處的切線為y2x3,求實(shí)教a,b的值.

          (2)若a0,且2對(duì)一切正實(shí)數(shù)x值成立,求實(shí)數(shù)b的取值范圍.

          (3)若b4,求函數(shù)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          1)求函數(shù)圖像在處的切線方程;

          2)證明:

          3)若不等式對(duì)于任意的均成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)寫出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;

          (2)直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)若不等式的解集為,求a的值;

          (2)在(1)的條件下,若存在,使,求t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案