【題目】在等腰直角三角形ABC中,AB=AC=4,點(diǎn)P是邊AB邊上異于AB的一點(diǎn),光線從點(diǎn)P出發(fā),經(jīng)BC,CA反射后又回到點(diǎn)P(如圖),若光線QR經(jīng)過(guò)△ABC的重心,則AP等于( )
A.2
B.1
C.
D.
【答案】D
【解析】解:建立如圖所示的坐標(biāo)系:
可得B(4,0),C(0,4),故直線BC的方程為x+y=4,
△ABC的重心為( ,
),設(shè)P(a,0),其中0<a<4,
則點(diǎn)P關(guān)于直線BC的對(duì)稱點(diǎn)P1(x,y),滿足 ,
解得 ,即P1(4,4﹣a),易得P關(guān)于y軸的對(duì)稱點(diǎn)P2(﹣a,0),
由光的反射原理可知P1 , Q,R,P2四點(diǎn)共線,
直線QR的斜率為k= =
,故直線QR的方程為y=
(x+a),
由于直線QR過(guò)△ABC的重心( ,
),代入化簡(jiǎn)可得3a2﹣4a=0,
解得a= ,或a=0(舍去),故P(
,0),故AP=
故選D
建立坐標(biāo)系,設(shè)點(diǎn)P的坐標(biāo),可得P關(guān)于直線BC的對(duì)稱點(diǎn)P1的坐標(biāo),和P關(guān)于y軸的對(duì)稱點(diǎn)P2的坐標(biāo),由P1 , Q,R,P2四點(diǎn)共線可得直線的方程,由于過(guò)△ABC的重心,代入可得關(guān)于a的方程,解之可得P的坐標(biāo),進(jìn)而可得AP的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直三棱柱中,
,
,
為棱
的中點(diǎn).
(Ⅰ)探究直線與平面
的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)若,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】市環(huán)保局舉辦2013年“六五”世界環(huán)境日宣傳活動(dòng),進(jìn)行現(xiàn)場(chǎng)抽獎(jiǎng).抽獎(jiǎng)規(guī)則是:盒中裝有10張大小相同的精美卡片,卡片上分別印有“環(huán)保會(huì)徽”或“綠色環(huán)保標(biāo)志”圖案.參加者每次從盒中抽取卡片兩張,若抽到兩張都是“綠色環(huán)保標(biāo)志”卡即可獲獎(jiǎng).
(1)活動(dòng)開(kāi)始后,一位參加者問(wèn):盒中有幾張“綠色環(huán)保標(biāo)志”卡?主持人笑說(shuō):我只知道若從盒中抽兩張都不是“綠色環(huán)保標(biāo)志”卡的概率是 .求抽獎(jiǎng)?wù)攉@獎(jiǎng)的概率;
(2)現(xiàn)有甲乙丙丁四人依次抽獎(jiǎng),抽后放回,另一人再抽.用ξ表示獲獎(jiǎng)的人數(shù).求ξ的分布列及E(ξ),D(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題
(1)(1)已知命題p:|x2﹣x|≥6,q:x∈Z且“p且q”與“非q”同時(shí)為假命題,求x的值.
(2)已知p:x2﹣8x﹣20≤0,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要而不充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C: =1(a>b>0)的離心率為
,以原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線x﹣y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2).設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015男籃亞錦賽決賽階段,中國(guó)男籃以連勝的不敗成績(jī)贏得第
屆亞錦賽冠軍,同時(shí)拿到亞洲唯一
張直通里約奧運(yùn)會(huì)的入場(chǎng)券.賽后,中國(guó)男籃主力易建聯(lián)榮膺本屆亞錦賽
(最有價(jià)值球員),下表是易建聯(lián)在這
場(chǎng)比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).
比分 | 易建聯(lián)技術(shù)統(tǒng)計(jì) | |||
投籃命中 | 罰球命中 | 全場(chǎng)得分 | 真實(shí)得分率 | |
中國(guó) | ||||
中國(guó) | ||||
中國(guó) | ||||
中國(guó) | ||||
中國(guó) | ||||
中國(guó) | ||||
中國(guó) | ||||
中國(guó) | ||||
中國(guó) |
注:(1)表中表示出手
次命中
次;
(2)(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:
(1)從上述場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中
超過(guò)
的概率;
(2)我們把比分分差不超過(guò)分的比賽稱為“膠著比賽”.為了考驗(yàn)求易建聯(lián)在“膠著比賽”中的發(fā)揮情況,從“膠著比賽”中隨機(jī)選擇兩場(chǎng),求易建聯(lián)在這兩場(chǎng)比賽中
至少有一場(chǎng)超過(guò)
的概率;
(3)用來(lái)表示易建聯(lián)某場(chǎng)的得分,用
來(lái)表示中國(guó)隊(duì)該場(chǎng)的總分,畫(huà)出散點(diǎn)圖如圖所示,請(qǐng)根據(jù)散點(diǎn)圖判斷
與
之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡(jiǎn)單說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤(rùn)÷保費(fèi)收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn),若每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量
(萬(wàn)份)與
(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組
與
的對(duì)應(yīng)數(shù)據(jù):
據(jù)此計(jì)算出的回歸方程為.
(i)求參數(shù)的估計(jì)值;
(ii)若把回歸方程當(dāng)作
與
的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計(jì)此產(chǎn)品的收益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大收益,并求出該最大收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的菱形中,
,點(diǎn)
分別是
的中點(diǎn),
,沿
將
翻折到
,連接
,得到如圖的五棱錐
,且
(1)求證: 平面
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2分別為雙曲線 ﹣
=1(a>0,b>0)的左右焦點(diǎn),如果雙曲線上存在一點(diǎn)P,使得F2關(guān)于直線PF1的對(duì)稱點(diǎn)恰在y軸上,則該雙曲線的離心率e的取值范圍為( )
A.e>
B.1<e<
C.e>
D.1<e<
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com