(本小題滿分l2分)
已知函數(shù)為自然對(duì)數(shù)的底數(shù)
(I) 當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ) 若函數(shù)在[-1,1]上單調(diào)遞減,求
的取值范圍.
(本小題滿分12分)
解:(I)當(dāng)時(shí),
,
………………2分
當(dāng)變化時(shí),
,
的變化情況如下表:
| | 1 | | 3 | |
| - | 0 | + | 0 | - |
| 遞減 | 極小值 | 遞增 | 極大值 | 遞減 |
所以,當(dāng)時(shí),函數(shù)
的極小值為
,極大值為
.……………5分
(II)
令
①若,則
,在
內(nèi),
,即
,函數(shù)
在區(qū)間
上單調(diào)遞減.………………7分
②若,則
,其圖象是開(kāi)口向上的拋物線,對(duì)稱軸為
,
當(dāng)且僅當(dāng),即
時(shí),在
內(nèi)
,
,
函數(shù)在區(qū)間
上單調(diào)遞減.………………9分
③若,則
,其圖象是開(kāi)口向下的拋物線,
當(dāng)且僅當(dāng),即
時(shí),在
內(nèi)
,
,
函數(shù)在區(qū)間
上單調(diào)遞減.………………………11分
綜上所述,函數(shù)在區(qū)間
上單調(diào)遞減時(shí),
的取值范圍是
.……………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分l2分)已知數(shù)列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).?dāng)?shù)列{bn}的前n項(xiàng)和為Sn,其中b1=-,bn+1=-
Sn(n∈N*).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若Tn=+
+…+
,求Tn的表達(dá)式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分l2分)已知橢圓的的右頂點(diǎn)為A,離心率,過(guò)左焦點(diǎn)
作直線
與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線
交于點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段為直徑的圓經(jīng)過(guò)焦點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年貴州省高三年級(jí)第五次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分l2分)(注意:在試題卷上作答無(wú)效)
求經(jīng)過(guò)A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓的方程
(I)求出圓的標(biāo)準(zhǔn)方程
(II)求出(I)中的圓與直線3x+4y=0相交的弦長(zhǎng)AB
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省高三上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分l2分)設(shè)命題:函數(shù)
(
)的值域是
;命題
:指數(shù)函數(shù)
在
上是減函數(shù).若命題“
或
”是假命題,求實(shí)數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆山西省高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分l2分)求垂直于直線并且與曲線
相切的直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com