日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•濟(jì)南二模)已知向量
          m
          =(2cosωx,-1),
          n
          =(sinωx-cosωx,2),函數(shù)f(x)=
          m
          n
          +3的周期為π.
          (Ⅰ) 求正數(shù)ω;
          (Ⅱ) 若函數(shù)f(x)的圖象向左平移
          π
          8
          ,再橫坐標(biāo)不變,縱坐標(biāo)伸長到原來的
          2
          倍,得到函數(shù)g(x)的圖象,求函數(shù)g(x)的單調(diào)增區(qū)間.
          分析:(Ⅰ)利用三角函數(shù)的恒等變換化簡f(x)的解析式為
          2
          sin(2ωx-
          π
          4
          )
          ,根據(jù)周期求出ω的值.
          (Ⅱ) 由(Ⅰ)知:f(x)=
          2
          sin(2x-
          π
          4
          )
          ,再根據(jù)y=Asin(ωx+∅)的圖象變換規(guī)律可得 g(x)=
          2
          2
          sin[2(x+
          π
          8
          )-
          π
          4
          ]
          =2sin2x,由2kπ-
          π
          2
          ≤2x≤2kπ+
          π
          2
          ,k∈Z,求得x的范圍,即可得到函數(shù)g(x)的單調(diào)增區(qū)間.
          解答:解:(Ⅰ)f(x)=
          m
          n
          +3=(2cosωx,-1)•(sinωx-cosωx,2)+3  …(1分)
          =2cosωx(sinωx-cosωx)+1  …(2分)
          =2sinωxcosωx-2cos2ωx+1  …(3分)
          =sin2ωx-cos2ωx  …(4分)
          =
          2
          sin(2ωx-
          π
          4
          )
          . …(5分)
          ∵T=π,且ω>0,∴ω=1.…(6分)
          (Ⅱ) 由(Ⅰ)知:f(x)=
          2
          sin(2x-
          π
          4
          )
          ,…(7分)
          y=Asin(ωx+∅)的圖象變換規(guī)律可得 g(x)=
          2
          2
          sin[2(x+
          π
          8
          )-
          π
          4
          ]
          =2sin2x. …(9分)
          由2kπ-
          π
          2
          ≤2x≤2kπ+
          π
          2
          ,k∈Z;…(10分)
          解得kπ-
          π
          4
          ≤x≤kπ+
          π
          4
          ,k∈Z;…(11分)
          ∴函數(shù)g(x)的單調(diào)增區(qū)間為[kπ-
          π
          4
          ,kπ+
          π
          4
          ]
          ,k∈Z.…(12分)
          點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,正弦函數(shù)的單調(diào)增區(qū)間,y=Asin(ωx+∅)的圖象變換規(guī)律,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•濟(jì)南二模)函數(shù)y=sinxsin(
          π
          2
          +x)
          的最小正周期是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•濟(jì)南二模)若a>b>0,則下列不等式不成立的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•濟(jì)南二模)在等差數(shù)列{an}中,a1=-2012,其前n項和為Sn,若
          S12
          12
          -
          S10
          10
          =2,則S2012的值等于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•濟(jì)南二模)如圖,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
          12
          AP=2,D是AP的中點,E,F(xiàn),G分別為PC、PD、CB的中點,將△PCD沿CD折起,使得PD⊥平面ABCD.

          (1)求證:平面PCD⊥平面PAD;
          (2)求二面角G-EF-D的大。
          (3)求三棱椎D-PAB的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•濟(jì)南二模)函數(shù)y=lg
          1
          |x+1|
          |的大致圖象為( 。

          查看答案和解析>>

          同步練習(xí)冊答案