日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:
          (1)直線DE∥平面A1C1F;
          (2)平面B1DE⊥平面A1C1F.

          【答案】
          (1)證明:∵D,E為中點(diǎn),

          ∴DE為△ABC的中位線,∴DE∥AC,

          又∵ABC﹣A1B1C1為棱柱,

          ∴AC∥A1C1,∴DE∥A1C1

          又∵A1C1平面A1C1F,且DEA1C1F,

          ∴DE∥平面A1C1F


          (2)證明:∵ABC﹣A1B1C1為直棱柱,

          ∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,

          又∵A1C1⊥A1B1且AA1∩A1B1=A1,AA1,A1B1平面AA1B1B,

          ∴A1C1⊥平面AA1B1B,

          又A1C1∥AC∥DE,∴DE⊥平面AA1B1B,

          又∵A1F平面AA1B1B,∴DE⊥A1F

          又∵A1F⊥B1D,DE∩B1D=D,且DE,B1D平面B1DE,

          ∴A1F⊥平面B1DE,

          又∵A1FA1C1F,∴平面B1DE⊥平面A1C1F


          【解析】(1)推導(dǎo)出DE∥AC,從而DE∥A1C1 , 由此能證明DE∥平面A1C1F.(2)推導(dǎo)出AA1⊥A1C1 , 從而A1C1⊥平面AA1B1B,進(jìn)而DE⊥平面AA1B1B,再由DE⊥A1F,得A1F⊥平面B1DE,由此能證明平面B1DE⊥平面A1C1F.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在路邊安裝路燈,路寬為OD,燈柱OB長(zhǎng)為h米,燈桿AB長(zhǎng)為1米,且燈桿與燈柱成120°角,路燈采用圓錐形燈罩,其軸截面的頂角為2θ,燈罩軸線AC與燈桿AB垂直.
          (1)設(shè)燈罩軸線與路面的交點(diǎn)為C,若OC=5 米,求燈柱OB長(zhǎng);
          (2)設(shè)h=10米,若燈罩軸截面的兩條母線所在直線一條恰好經(jīng)過點(diǎn)O,另一條與地面的交點(diǎn)為E(如圖2);
          (i)求cosθ的值;
          (ii)求該路燈照在路面上的寬度OE的長(zhǎng);

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知x∈(1,5),則函數(shù)y= + 的最小值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知首項(xiàng)為1的正項(xiàng)數(shù)列{an}滿足an+12+an2 ,n∈N* , Sn為數(shù)列{an}的前n項(xiàng)和.
          (1)若a2= ,a3=x,a4=4,求x的取值范圍;
          (2)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,若 <Sn+1<2Sn , n∈N* , 求q的取值范圍;
          (3)若a1 , a2 , …,ak(k≥3)成等差數(shù)列,且a1+a2+…+ak=120,求正整數(shù)k的最小值,以及k取最小值時(shí)相應(yīng)數(shù)列a1 , a2 , …,ak

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)= ,若f(x)的值域?yàn)镽,是實(shí)數(shù)a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和Sn , 且an= (n∈N*). (Ⅰ)若數(shù)列{an+t}是等比數(shù)列,求t的值;
          (Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅲ)記bn= + ,求數(shù)列{bn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】直線y=kx﹣1與曲線 有兩個(gè)不同的公共點(diǎn),則k的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知ω>0,0<φ<π,直線x= 和x= 是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對(duì)稱軸,則
          (1)求f(x)的解析式;
          (2)設(shè)h(x)=f(x)+

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】求分別滿足下列條件的直線l的方程:
          (1)斜率是 ,且與兩坐標(biāo)軸圍成的三角形的面積是6;
          (2)經(jīng)過兩點(diǎn)A(1,0)、B(m,1);
          (3)經(jīng)過點(diǎn)(4,-3),且在兩坐標(biāo)軸上的截距的絕對(duì)值相等.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案