日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對任意的,都有.
          (1)若{bn }的首項為4,公比為2,求數(shù)列{an+bn}的前n項和Sn;
          (2)若 ,試探究:數(shù)列{bn}中是否存在某一項,它可以表示為該數(shù)列中其它項的和?若存在,請求出該項;若不存在,請說明理由.

          (1)  ;(2)不存在.

          解析試題分析:對任意的,都有.
          所以( )兩式相減可求  
          (1)由于等比數(shù){bn }的首項為4,公比為2,可知 ,于是可求得 ,
          再將數(shù)列{an+bn}的前n項和拆分為等差數(shù)列{an}的前項和與等比數(shù)列的前 項和之和.
          (2)由,    假設(shè)存在一項 ,可表示為 
          一方面, ,另一方面,
           
          兩者相矛盾K值不存在.
          試題解析:
          解:(1)因為,所以當時,
          ,
          兩式相減,得,
          而當n=1時,,適合上式,從而,3分
          又因為{bn}是首項為4,公比為2的等比數(shù)列,即,所以,4分
          從而數(shù)列{an+bn}的前項和;6分
          (2)因為,,所以,. 8分
          假設(shè)數(shù)列{bn}中第k項可以表示為該數(shù)列中其它的和,即,從而,易知 ,(*) 9分
          ,
          所以,此與(*)矛盾,從而這樣的項不存在. 12分
          考點:1、等比數(shù)列的通項公式和前 項和公式;2、拆項求和.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知等比數(shù)列首項為,公比為q,求(1)該數(shù)列的前n項和。
          (2)若q≠1,證明數(shù)列 不是等比數(shù)列

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè) 數(shù)列滿足: 
          (1)求證:數(shù)列是等比數(shù)列(要指出首項與公比);
          (2)求數(shù)列的通項公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在正項數(shù)列中,.對任意的,函數(shù)滿足.
          (1)求數(shù)列的通項公式;
          (2)求數(shù)列的前項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在數(shù)列中,已知.
          (1)求數(shù)列的通項公式;
          (2)設(shè),求數(shù)列的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
          (1)求證:數(shù)列{an-n}是等比數(shù)列;
          (2)求數(shù)列{an}的前n項和Sn;
          (3)求證:不等式Sn+1≤4Sn對任意n∈N*皆成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)C1、C2、…、Cn、…是坐標平面上的一列圓,它們的圓心都在軸的正半軸上,且都與直線y=x相切,對每一個正整數(shù)n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,已知{rn}為遞增數(shù)列.

          (1)證明:{rn}為等比數(shù)列;
          (2)設(shè)r1=1,求數(shù)列的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在數(shù)列中,,,設(shè)
          (1)證明:數(shù)列是等比數(shù)列;
          (2)求數(shù)列的前項和;
          (3)若,為數(shù)列的前項和,求不超過的最大的整數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)為等比數(shù)列,為其前項和,已知.
          (1)求的通項公式;
          (2)求數(shù)列的前項和

          查看答案和解析>>

          同步練習(xí)冊答案