日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•普陀區(qū)一模)給出問(wèn)題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
          (i)a•
          b2+c2-a2
          2bc
          =b•
          a2+c2-b2
          2ac
          ?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
          故△ABC是直角三角形.
          (ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
          故△ABC是等腰三角形.
          綜上可知,△ABC是等腰直角三角形.
          請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果
          等腰或直角三角形
          等腰或直角三角形
          分析:(i)利用余弦定理將角化為邊,即可得到結(jié)論;(ii)由正弦定理,將邊化為角,可得結(jié)論.
          解答:解:不正確,解答的兩種方法都可得出結(jié)論,但都不完整.
          (i)a•
          b2+c2-a2
          2bc
          =b•
          a2+c2-b2
          2ac
          ?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2或a2-b2=0,故△ABC是等腰或直角三角形;
          (ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=sin2B?A=B或A+B=
          π
          2
          ,故△ABC是等腰或直角三角形;
          故答案為:等腰或直角三角形
          點(diǎn)評(píng):本題考查三角形形狀的判斷,解題的關(guān)鍵是利用余弦定理、正弦定理進(jìn)行邊角互化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•普陀區(qū)一模)
          e
          1
          ,
          e
          2
          是兩個(gè)不共線的向量,已知
          AB
          =2
          e
          1
          +k
          e
          2
          ,
          CB
          =
          e
          1
          +3
          e
          2
          CD
          =2
          e
          1
          -
          e
          2
          ,且A,B,D三點(diǎn)共線,則實(shí)數(shù)k=
          -8
          -8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•普陀區(qū)一模)設(shè)全集為R,集M={x|
          x2
          4
          +y2=1
          },N={x|
          x-3
          x+1
          ≤0
          },則集合{x|(x+
          3
          2
          )
          2
          +y2=
          1
          4
          }可表示為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•普陀區(qū)一模)已知數(shù)列{an}是首項(xiàng)為2的等比數(shù)列,且滿足an+1=pan+2n(n∈N*)
          (1)求常數(shù)p的值和數(shù)列{an}的通項(xiàng)公式;
          (2)若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、…第3n-2項(xiàng),…,余下的項(xiàng)按原來(lái)的順序組成一個(gè)新的數(shù)列{bn},試寫出數(shù)列
          {bn}的通項(xiàng)公式;
          (3)在(2)的條件下,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,是否存在正整數(shù)n,使得
          Tn+1
          Tn
          =
          11
          3
          ?若存在,試求所有滿足條件的正整數(shù)n的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•普陀區(qū)一模)對(duì)于平面α、β、γ和直線a、b、m、n,下列命題中真命題是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•普陀區(qū)一模)函數(shù)y=
          1
          log
          1
          2
          |x-1|
          的定義域是
          (0,1)∪(1,2)
          (0,1)∪(1,2)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案