【題目】已知.
(1)討論的單調(diào)性;
(2)若,且
在區(qū)間
上的最小值為
,求
的值.
【答案】(1)當(dāng)時,
在
上單調(diào)遞增;當(dāng)
時,
在
上單調(diào)遞增,在
上單調(diào)遞減;(2)
.
【解析】
(1)根據(jù)函數(shù)解析式可得定義域和導(dǎo)函數(shù);分別在和
兩種情況下討論導(dǎo)函數(shù)的符號,從而得到函數(shù)的單調(diào)性;(2)首先確定
解析式和
;通過
可知
;分別在
、
和
三種情況下確定
在
上的單調(diào)性,從而得到最小值的位置,利用最小值構(gòu)造方程求得結(jié)果.
(1)由題意得:定義域為:
;
當(dāng)時,
在
上恒成立
在
上單調(diào)遞增
當(dāng)時,令
,解得:
時,
;
時,
在
上單調(diào)遞增;在
上單調(diào)遞減
綜上所述:當(dāng)時,
在
上單調(diào)遞增;當(dāng)
時,
在
上單調(diào)遞增,在
上單調(diào)遞減
(2)
則
令,解得:
①當(dāng),即
時,
在
上恒成立
在
上單調(diào)遞增
,解得:
,舍去
②當(dāng),即
時,
時,
;
時,
在
上單調(diào)遞減;在
上單調(diào)遞增
,解得:
,符合題意
③當(dāng),即
時,
在
上恒成立
在
上單調(diào)遞減
,解得:
,舍去
綜上所述:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義一:對于一個函數(shù),若存在兩條距離為
的直線
和
,使得
時,
恒成立,則稱函數(shù)
在
內(nèi)有一個寬度為
的通道.
定義二:若一個函數(shù)對于任意給定的正數(shù)
,都存在一個實數(shù)
,使得函數(shù)
在
內(nèi)有一個寬度為
的通道,則稱
在正無窮處有永恒通道.
下列函數(shù)①;②
;③
;④
;⑤
. 其中在正無窮處有永恒通道的函數(shù)序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,A(x1,y1),B(x2,y2)是過F的直線與拋物線的兩個交點,求證:
(1)y1y2=-p2,;(2)
為定值;
(3)以AB為直徑的圓與拋物線的準(zhǔn)線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點
與橢圓
:
的一個焦點重合,點
在拋物線上,過焦點
的直線
交拋物線于
、
兩點.
(Ⅰ)求拋物線的方程以及
的值;
(Ⅱ)記拋物線的準(zhǔn)線與
軸交于點
,試問是否存在常數(shù)
,使得
且
都成立?若存在,求出實數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求
的單調(diào)區(qū)間;
(2)若函數(shù)在
處取得極大值,求實數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩條不同的直線,
是兩個不同的平面,有下列正確命題的序號是________.
(1)若m∥,n∥
,則m∥n, (2)若
則
(3)若,
且
,則
; (4)若
,
,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為
,且C與y軸交于
兩點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)P點是橢圓C上的一個動點且在y軸的右側(cè),直線PA,PB與直線交于M,N兩點.若以MN為直徑的圓與x軸交于E,F(xiàn)兩點,求P點橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5;不等式選講.
已知函數(shù).
(1)若的解集非空,求實數(shù)
的取值范圍;
(2)若正數(shù)滿足
,
為(1)中m可取到的最大值,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓
內(nèi)一個定點,
是圓上任意一點.線段
的垂直平分線和半徑
相交于點
.
(Ⅰ)當(dāng)點在圓上運動時,點
的軌跡
是什么曲線?并求出其軌跡方程;
(Ⅱ)過點作直線
與曲線
交于
、
兩點,點
關(guān)于原點
的對稱點為
,求
的面積
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com