【題目】已知函數(shù)f(x)=lnx﹣mx(m∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當m≥ 時,設(shè)g(x)=2f(x)+x2的兩個極值點x1 , x2(x1<x2)恰為h(x)=lnx﹣cx2﹣bx的零點,求y=(x1﹣x2)h′(
)的最小值.
【答案】
(1)解:∵函數(shù)f(x)=lnx﹣mx,∴ ,x>0;
當m>0時,由1﹣mx>0解得x< ,即當0<x<
時,f'(x)>0,f(x)單調(diào)遞增;
由1﹣mx<0解得x> ,即當x>
時,f'(x)<0,f(x)單調(diào)遞減;
當m=0時,f'(x)= >0,即f(x)在(0,+∞)上單調(diào)遞增;
當m<0時,1﹣mx>0,故f'(x)>0,即f(x)在(0,+∞)上單調(diào)遞增;
∴當m>0時,f(x)的單調(diào)遞增區(qū)間為(0, ),單調(diào)遞減區(qū)間為(
,+∞);
當m≤0時,f(x) 的單調(diào)遞增區(qū)間為(0,+∞); …(5分)
(2)解:g(x)=2f(x)+x2=2lnx﹣2mx+x2,則 ,
∴g'(x)的兩根x1,x2即為方程x2﹣mx+1=0的兩根;
又∵m≥ ,
∴△=m2﹣4>0,x1+x2=m,x1x2=1;
又∵x1,x2為h(x)=lnx﹣cx2﹣bx的零點,
∴l(xiāng)nx1﹣cx12﹣bx1=0,lnx2﹣cx22﹣bx2=0,
兩式相減得 ﹣c(x1﹣x2)(x1+x2)﹣b(x1﹣x2)=0,
得b= ,
而 ,
∴y=
=
]
= =
,
令 (0<t<1),
由(x1+x2)2=m2得x12+x22+2x1x2=m2,
因為x1x2=1,兩邊同時除以x1x2,得t+ +2=m2,
∵m≥ ,故t+
≥
,解得t≤
或t≥2,∴0<t≤
;
設(shè)G(t)= ,
∴G'(t)= ,則y=G(t)在(0,
]上是減函數(shù),
∴G(t)min=G( )=﹣
+ln2,
即 的最小值為﹣
+ln2
【解析】(1)求出函數(shù)f(x)的導(dǎo)數(shù),討論m的取值,利用導(dǎo)數(shù)判斷函數(shù)f(x)的單調(diào)性與單調(diào)區(qū)間;(2)對函數(shù)g(x)求導(dǎo)數(shù),利用極值的定義得出g'(x)=0時存在兩正根x1 , x2;
再利用判別式以及根與系數(shù)的關(guān)系,結(jié)合零點的定義,構(gòu)造函數(shù),利用導(dǎo)數(shù)即可求出函數(shù)y的最小值.
【考點精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞減;求函數(shù)
的極值的方法是:(1)如果在
附近的左側(cè)
,右側(cè)
,那么
是極大值(2)如果在
附近的左側(cè)
,右側(cè)
,那么
是極小值才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有4個不同的小球,全部放入4個不同的盒子內(nèi),恰好有兩個盒子不放球的不同放法的總數(shù)為____________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若樣本的平均數(shù)是
,方差是
,則對樣本
,下列結(jié)論正確的是 ( )
A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25
C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知三個點列{An}、{Bn}、{Cn},其中An(n,an)、Bn(n,bn)、Cn(n﹣1,0),滿足向量 與向量
共線,且bn+1﹣bn=6,a1=b1=0,則an=(用n表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: =1(a>b>0)的焦點F1 , F2 , 過右焦點F2的直線l與C相交于P、Q兩點,若△PQF1的周長為短軸長的2
倍.
(1)求C的離心率;
(2)設(shè)l的斜率為1,在C上是否存在一點M,使得 ?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,
平面
,
,點
是
上的點,且
.
(1)求證:對任意的 ,都有
.
(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面
所成的角為
,
若,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若對于定義域內(nèi)的任意x1 , 總存在x2使得f(x2)<f(x1),則滿足條件的實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△中,已知
,直線
經(jīng)過點
.
(Ⅰ)若直線:
與線段
交于點
,且
為△
的外心,求△
的外接圓的方程;
(Ⅱ)若直線方程為
,且△
的面積為
,求點
的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , 其中a∈R.若對任意的非零實數(shù)x1 , 存在唯一的非零實數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則k的取值范圍為( 。
A.k≤0
B.k≥8
C.0≤k≤8
D.k≤0或k≥8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com