日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減;
          (1)求a的值;
          (2)是否存在實(shí)數(shù)b,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有2個(gè)交點(diǎn),若存在,求出實(shí)數(shù)b的值;若不存在,試說明理由.
          (3)若對(duì)任意實(shí)數(shù)m∈[-6,-2],不等式f(x)≤mx3+2x2-n,在x∈[-1,1]上恒成立,求實(shí)數(shù)n的取值范圍.

          解:(1)∵f(x)在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減,
          ∴f′(1)=0,f′(1)=4x3-12x2+2ax|x=1=2a-8=0,∴a=4;
          (2)由(1)知f(x)=x4-4x3+4x2-1,由f(x)=g(x)可得x4-4x3+4x2-1=bx2-1
          即x2(x2-4x+4-b)=0.∵f(x)的圖象與g(x)的圖象只有兩個(gè)交點(diǎn),
          ∴方程x2-4x+4-b=0有兩個(gè)非零等根或有一根為0,另一個(gè)不為0,
          ∴△=16-4(4-b)=0,或4-b=0,∴b=0或b=4.
          (3)由 x4-4x3+4x2-1≤mx3+2x2-n 恒成立,可得 x4-(4+m)x3+2x2+n-1≤0恒成立.
          設(shè)F(x)=x4-(4+m)x3+2x2+n-1,則F(x)≤0恒成立,故F(x)的最大值小于或等于0.
          F′(x)=4x3-3(4+m)x2+4x=x[4x2-3(4+m)x+4],
          ∵-6≤m≤-2,∴-2≤4+m≤2,∴判別式△=9(4+m)2-64<0,
          4x2-3(4+m)x+4>0恒成立,由F′(x)>0,得 x>0,∴F(x)在(0,1]上是增函數(shù),
          故F(x)的最大值F(1)≤0,∴n≤m+2,∴n≤-6+2=-4,即 n≤-4.
          由F′(x)<0,得 x<0,故 F(x)在[-1,0]上是減函數(shù),故F(x)的最大值F(0)≤0,
          即n-1≤0,n≤1.
          綜上,要使 x4-(4+m)x3+2x2+n-1≤0恒成立,必須n≤-4.實(shí)數(shù)n的取值范圍是(-∞,-4].
          分析:(1)由f(x)在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減,可得f(1)為極大值,故f′(1)=0,
          求出a的值.
          (2)由f(x)=g(x)可得 x2(x2-4x+4-b)=0,方程x2-4x+4-b=0有兩個(gè)非零等根或有一根為0,另一個(gè)不為0,
          由△=16-4(4-b)=0,或4-b=0 求得b值.
          (3)由題意得,F(xiàn)(x)=x4-(4+m)x3+2x2+n-1≤0恒成立,故F(x)在x∈[-1,1]上的最大值小于或等于0.
          由F(x)在(0,1]上 的最大值F(1)≤0 恒成立得 n≤-4,由F(x)在[-1,0]上的最大值F(0)≤0 得
          n≤1,綜合得n≤-4.
          點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,函數(shù)的恒成立問題,利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值,求 F(x)在[-1,1]上的最大值是解題的難點(diǎn)和關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案