日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】己知圓的圓心在直線上,且過(guò)點(diǎn),與直線相切.

          )求圓的方程

          )設(shè)直線與圓相交于兩點(diǎn).求實(shí)數(shù)的取值范圍.

          的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過(guò)點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由

          【答案】(1);(2);(3)見(jiàn)解析.

          【解析】本試題主要是考查了線與圓的位置關(guān)系的綜合運(yùn)用。

          1)因?yàn)閳AC的圓心在直線y=x+1上,且過(guò)點(diǎn)1,3),與直線x+2y-7=0相切. 利用圓心到直線的距離等于圓的半徑得到結(jié)論。

          2)因?yàn)橹本與圓相交,則圓心到直線的距離小于圓的半徑得到參數(shù)a的范圍。

          3)設(shè)符合條件的實(shí)數(shù)存在,由于,則直線的斜率為,的方程為,即,由于垂直平分弦,故圓心上,從而得到。

          解:(1)因?yàn)閳AC的圓心在直線y=x+1上,可設(shè)圓心坐標(biāo)為,由題意可列方

          ,解得,所以圓心坐標(biāo)為(),半徑

          ,所以圓的方程為-----------------5

          (2)聯(lián)立方程,消,由于直線與圓交于兩點(diǎn),所以,解得,所以的取值范圍是(------8分(3)設(shè)符合條件的實(shí)數(shù)存在,由于,則直線的斜率為,的方程為,即,由于垂直平分弦,故圓心上,

          所以,解得,由于,故不存在實(shí)數(shù),使得過(guò)點(diǎn)的直線垂直平分弦.--------------13

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)是拋物線的焦點(diǎn), 若點(diǎn),

          1)求的值;

          2)若直線經(jīng)過(guò)點(diǎn)且與交于(異于)兩點(diǎn), 證明: 直線與直線的斜率之積為常數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對(duì)象,如下圖所示((噸)為買進(jìn)蔬菜的質(zhì)量, (天)為銷售天數(shù)):

          2

          3

          4

          5

          6

          7

          9

          12

          1

          2

          3

          3

          4

          5

          6

          8

          (Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖;

          (Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

          (Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,則預(yù)計(jì)需要銷售多少天.

          參考公式: , .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2016年春節(jié),“搶紅包”成為社會(huì)熱議的話題之一.某機(jī)構(gòu)對(duì)春節(jié)期間用戶利用手機(jī)“搶紅包”的情況進(jìn)行調(diào)查,如果一天內(nèi)搶紅包的總次數(shù)超過(guò)10次為“關(guān)注點(diǎn)高”,否則為“關(guān)注點(diǎn)低”,調(diào)查情況如下表所示:

          (1)填寫(xiě)上表中x,y的值并判斷是否有95%以上的把握認(rèn)為性別與關(guān)注點(diǎn)高低有關(guān)?

          (2)現(xiàn)要從上述男性用戶中隨機(jī)選出3名參加一項(xiàng)活動(dòng),以X表示選中的同學(xué)中搶紅包總次數(shù)超過(guò)10次的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).

          下面的臨界值表供參考:

          獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中n=a+b+c+d.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,,,,,分別為,的中點(diǎn).

          (I)求證:平面

          (II)求直線和平面所成角的正弦值

          (III)能否在上找一點(diǎn),使得平面?若能,請(qǐng)指出點(diǎn)的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】把不等式組 的解集表示在數(shù)軸上,正確的是( 。
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知四邊形為直角梯形, ,若是以為底邊的等腰直角三角形,且.

          (1)證明: 平面

          (2)求直線與平面所成的角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖, 是邊長(zhǎng)為的菱形, , 平面, 平面, .

          (Ⅰ)求證: ;

          (Ⅱ)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直三棱柱中,,,,點(diǎn)在線段上.

          (Ⅰ)證明;

          (Ⅱ)若中點(diǎn),證明平面

          (Ⅲ)當(dāng)時(shí),求二面角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案