日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P與定點(diǎn)F(1,0)的距離和它到定直線x=2的距離之比是,設(shè)動(dòng)點(diǎn)P的軌跡為C1,Q是動(dòng)圓(1<r<2)上一點(diǎn).
          (1)求動(dòng)點(diǎn)P的軌跡C1的方程,并說明軌跡是什么圖形;
          (2)設(shè)曲線C1上的三點(diǎn)與點(diǎn)F的距離成等差數(shù)列,若線段AC的垂直平分線與x軸的交點(diǎn)為T,求直線BT的斜率k;
          (3)若直線PQ與C1和動(dòng)圓C2均只有一個(gè)公共點(diǎn),求P、Q兩點(diǎn)的距離|PQ|的最大值.
          【答案】分析:(1)由已知,得,由此能求出動(dòng)點(diǎn)P的軌跡C1的方程和軌跡是什么圖形.
          (2)由已知可得,,因?yàn)?|BF|=|AF|+|CF|,所以x1+x2=2,故線段AC的中點(diǎn)為,其垂直平分線方程為,由此能求出直線BT的斜率.
          (3)設(shè)P(x1,y1)、Q(x2,y2),直線PQ的方程為y=kx+m,因?yàn)镻既在橢圓C1上又在直線PQ上,由此能求出P、Q兩點(diǎn)的距離|PQ|的最大值.
          解答:解:(1)由已知,得,…(2分).
          將兩邊平方,并化簡得,…(4分).
          故軌跡C1的方程是,
          它是長軸、短軸分別為、2的橢圓…(4分).
          (2)由已知可得,
          因?yàn)?|BF|=|AF|+|CF|,所以=
          即得x1+x2=2,①…(5分).
          故線段AC的中點(diǎn)為,
          其垂直平分線方程為,②…(6分).
          因?yàn)锳,C在橢圓上,故有,
          兩式相減,得:
          將①代入③,化簡得,④…(7分).
          將④代入②,并令y=0得,
          即T的坐標(biāo)為.…(8分).
          所以.…(9分).
          (3)設(shè)P(x1,y1)、Q(x2,y2),
          直線PQ的方程為y=kx+m,
          因?yàn)镻既在橢圓C1上又在直線PQ上,
          從而有
          ∴(2k2+1)x2+4kmx+2(m2-1)=0…(10分).
          由于直線PQ與橢圓C1相切,故△=(4km)2-4×2(m2-1)(2k2+1)=0
          從而可得m2=1+2k2,
          同理,由Q既在圓C2上又在直線PQ上,可得m2=r2(1+k2),…(12分)

          所以
          =
          =…(13分).
          ,當(dāng)且僅當(dāng)時(shí)取等號,
          故P、Q兩點(diǎn)的距離|PQ|的最大值.…(14分).
          點(diǎn)評:本題考查直線與圓錐曲線的綜合應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,有一定的探索性,對數(shù)學(xué)思維能力要求較高,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)系xOy中,橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
          5
          3

          (Ⅰ)求C1的方程;
          (Ⅱ)平面上的點(diǎn)N滿足
          MN
          =
          MF1
          +
          MF2
          ,直線l∥MN,且與C1交于A,B兩點(diǎn),若
          OA
          OB
          =0
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
          OP
          OQ
          垂直,求x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動(dòng)點(diǎn)P在射線OA上運(yùn)動(dòng),動(dòng)點(diǎn)Q在y軸的正半軸上運(yùn)動(dòng),△POQ的面積為2
          3

          (1)求線段PQ中點(diǎn)M的軌跡C的方程;
          (2)R1,R2是曲線C上的動(dòng)點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個(gè)m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
          x=tcosθ
          y=1+tsinθ
          (t
          為參數(shù))
          (I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
          (II)求直線l被軌跡C截得的最大弦長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率e=
          2
          2
          ,左右兩個(gè)焦分別為F1,F(xiàn)2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l 的對稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案