(本小題滿分12分)已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求
的取值范圍;
(2)若且關(guān)于x的方程
在
上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(1)的取值范圍是
;(2)
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的 運(yùn)用。求解函數(shù)的單調(diào)性,以及函數(shù)與方程根的綜合運(yùn)用。
(1)依題意函數(shù)在定義域內(nèi)單調(diào)遞增,即
在
時(shí)恒成立,即
在
恒成立.
則分離參數(shù)的思想得到在
恒成立,即
(2)利用構(gòu)造函數(shù),利用函數(shù)的單調(diào)性,得到函數(shù)的極值,從而研究函數(shù)圖像與坐標(biāo)軸的交點(diǎn)問題,得到方程的解。
解: (1)
依題意在
時(shí)恒成立,即
在
恒成立.
則在
恒成立,即
當(dāng)時(shí),
取最小值
∴的取值范圍是
………………6分
(2)
設(shè)則
列表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
極大值 |
¯ |
極小值 |
|
∴極小值
,
極大值
,又
……8分
方程
在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根.
則, 得
…………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、
、
.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com