日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)設(shè)函數(shù).
          (Ⅰ)求函數(shù)f (x)在點(diǎn)(0, f (0))處的切線方程;
          (Ⅱ)求f (x)的極小值;
          (Ⅲ)若對所有的,都有成立,求實(shí)數(shù)a的取值范圍.
          y=2x,
          (-∞,1.
          (Ⅰ)∵f(x)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245781396.gif" style="vertical-align:middle;" />,又∵=2ln(2x+1)+2,
          ,切點(diǎn)為O(0,0),∴所求切線方程為y=2x. …………2分
          (Ⅱ) 設(shè)=0,得ln(2x+1)=-1,得;
          >0,得ln(2x+1)>-1,得;
          <0,得ln(2x+1)<-1,得;
          .…………6分
          (Ⅲ)令
          =2ln(2x+1)+2-2a=2[ln(2x+1)+1-a].
          =0,得ln(2x+1)= a-1,得;
           >0,得ln(2x+1)> a-1,得
           <0,得ln(2x+1)< a-1,得;
          (1)當(dāng)a≤1時(shí),,∵,
          ∴對所有時(shí),都有,于是≥0恒成立,
          ∴g(x)在[0,+∞)上是增函數(shù).
          又g(0)=0,于是對所有,都有g(shù)(x)≥ g(0)=0成立.
          故當(dāng)a≤1時(shí),對所有的,都有成立.
          (2)當(dāng)a>1時(shí),,∵,
          ∴對所有,都有<0恒成立,
          ∴g(x)在上是減函數(shù). 
          g(0)=0,于是對所有,都有g(x)g (0)=0.
          故當(dāng)a>1時(shí),只有對僅有的,都有.
          即當(dāng)a>1時(shí),不是對所有的,都有.
          綜合(1),(2)可知實(shí)數(shù)a的取值范圍(-∞,1.……………………12分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù)的導(dǎo)函數(shù)為,若對任意實(shí)數(shù)x,都有,則等于    。   )
          A.1B.-1 C.0D.1或-1,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分13分)已知函數(shù)
          (1)當(dāng)的單調(diào)區(qū)間;
          (2)若任意給定的,使得
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (1)求的單調(diào)區(qū)間;                 
          (2)令,設(shè)函數(shù)處取得極值,記點(diǎn),證明:線段與曲線存在異于、的公共點(diǎn);

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè),在處取得極大值,且存在斜率為的切線。
          (1)求的取值范圍;
          (2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
          (3)是否存在的取值使得對于任意,都有。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分14分)已知是函數(shù)的一個(gè)極值點(diǎn)。
          (Ⅰ)求;
          (Ⅱ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍;
          (Ⅲ)設(shè)=(++(6-+2(),,若
          =0有兩個(gè)零點(diǎn),且,試探究值的符號(hào)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù) 
          (1)若上是減函數(shù),求的最大值;
          (2)若的單調(diào)遞減區(qū)間是,求函數(shù)y=圖像過點(diǎn)的切線與兩坐標(biāo)軸圍成圖形的面積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若函數(shù))的零點(diǎn)都在區(qū)間[-10,10]上,則使得方程有正整數(shù)解的實(shí)數(shù)的取值個(gè)數(shù)為                          (   )
          A.1;B.2;C.3;D.4.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          函數(shù)fx)=(x+1)(x2x+1)的導(dǎo)數(shù)是                               (   )
          A.x2x+1B.(x+1)(2x-1)
          C.3x2D.3x2+1

          查看答案和解析>>

          同步練習(xí)冊答案