【題目】如圖,已知⊙O的直徑AB=3,點C為⊙O上異于A,B的一點,平面ABC,且
,點M為線段VB的中點.
(1)求證:平面VAC;
(2)若AB與平面VAC所成角的余弦值為,求二面角
的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)根據(jù)線面垂直的判定定理即可證明平面VAC;
(2)由AB與平面VAC所成角的余弦值為,求出
,建立空間直角坐標(biāo)系,利用向量法能求出二面角
的余弦值.
(1)證明:因為平面ABC,
平面ABC,
所以,
又因為點C為圓O上一點,且AB為直徑,
所以,
又因為VC,平面VAC,
,
所以平面VAC.
(2)由(1)知平面VAC,
所以AB與平面VAC的所成角就是,
在,
,
,
.
由(1)得,
,
,分別以AC,BC,VC,
所在的直線為x軸,y軸,z軸建立空間直角坐標(biāo)系C-xyz如圖:
則,
,
,
設(shè)平面VAC的法向量,
,
,
設(shè)平面VAM的法向量,
由,令
,
得,
.
設(shè)二面角M-VA-C的平面角為,
所以,所以所求二面角的余弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,
平面
,
是正三角形,
與
的交點
恰好是
中點,又
,
.
(1)求證:;
(2)設(shè)為
的中點,點
在線段
上,若直線
平面
,求
的長;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
,直線
:
.
(1)若直線與拋物線
相切,求直線
的方程;
(2)設(shè),直線
與拋物線
交于不同的兩點
,
,若存在點
,滿足
,且線段
與
互相平分(
為原點),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在五邊形AEBCD中,,C
,
,
,
(如圖).將△ABE沿AB折起,使平面ABE⊥平面ABCD,線段AB的中點為O(如圖).
(1)求證:平面ABE⊥平面DOE;
(2)求平面EAB與平面ECD所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為調(diào)查高三年級學(xué)生的身高情況,按隨機抽樣的方法抽取100名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在的男生人數(shù)有16人.
(1)試問在抽取的學(xué)生中,男,女生各有多少人?
(2)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?
總計 | |||
男生身高 | |||
女生身高 | |||
總計 |
(3)在上述100名學(xué)生中,從身高在之間的男生和身高在
之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當(dāng)旗手,求2人中恰好有一名女生的概率.
參考公式:
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,
為橢圓上不與左右頂點重合的任意一點,
,
分別為
的內(nèi)心、重心,當(dāng)
軸時,橢圓的離心率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級期末考試后,對數(shù)學(xué)成績在分以上(含
分)的學(xué)生成績進行統(tǒng)計,其頻率分布直方圖如圖所示.其中
分?jǐn)?shù)段的人數(shù)為
人.
(1)根據(jù)頻率分布直方圖,寫出該班級學(xué)生數(shù)學(xué)成績的眾數(shù);
(2)現(xiàn)根據(jù)學(xué)生數(shù)學(xué)成績從第一組和第四組(從低分段到高分段依次為第一組,第二組,,第五組)中任意選出兩人形成學(xué)習(xí)小組.若選出的兩人成績之差大于
分則稱這兩人為“最佳組合”,試求選出的兩人為“最佳組合”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推動更多人閱讀,聯(lián)合國教科文組織確定每年的4月23日為“世界讀書日”設(shè)立目的是希望居住在世界各地的人,無論你是年老還是年輕,無論你是貧窮還是富裕,都能享受閱讀的樂趣,都能尊重和感謝為人類文明做出過巨大貢獻(xiàn)的思想大師們,都能保護知識產(chǎn)權(quán).為了解不同年齡段居民的主要閱讀方式,某校興趣小組在全市隨機調(diào)查了200名居民,經(jīng)統(tǒng)計這200人中通過電子閱讀與紙質(zhì)閱讀的人數(shù)之比為3:1,將這200人按年齡分組,其中統(tǒng)計通過電子閱讀的居民得到的頻率分布直方圖如圖所示,
(1)求a的值及通過電子閱讀的居民的平均年鹼;
(2)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中通過紙質(zhì)閱讀的中老年有30人,請完成下面2×2列聯(lián)表,并判斷是否有97.5%的把握認(rèn)為閱讀方式與年齡有關(guān)?
參考公式:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com