日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}滿足:,

          ⑴求數(shù)列{an}的通項(xiàng)公式;      ⑵證明:

          ⑶設(shè),且,證明:

          (1)(2)(3)見(jiàn)解析


          解析:

          :⑴由,得,有

           =

          b1=2a1=2,    

                     

          ⑵證法1:(數(shù)學(xué)歸納法)

          1°,當(dāng)n=1時(shí),a1=1,滿足不等式     

          2°,假設(shè)nk(k≥1,kN*)時(shí)結(jié)論成立

          ,那么

                又

          由1°,2°可知,nN*,都有成立   

          ⑵證法2:由⑴知:                (可參照給分)

          ,,∴

            ∵

            ∴當(dāng)n=1時(shí),,綜上

          ⑵證法3:  

          ∴{an}為遞減數(shù)列   當(dāng)n=1時(shí),an取最大值  ∴an≤1

          由⑴中知    

          綜上可知

          欲證:即證   

          即ln(1+Tn)-Tn<0,構(gòu)造函數(shù)f (x)=ln(1+x)-x

          當(dāng)x>0時(shí),f ' (x)<0

          ∴函數(shù)yf (x)在(0,+∞)內(nèi)遞減∴f (x)在[0,+∞)內(nèi)的最大值為f (0)=0

          ∴當(dāng)x≥0時(shí),ln(1+x)-x≤0又∵Tn>0,∴l(xiāng)n(1+Tn)-Tn<0∴不等式成立   

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足:a1=1且an+1=
          3+4an
          12-4an
          , n∈N*

          (1)若數(shù)列{bn}滿足:bn=
          1
          an-
          1
          2
          (n∈N*)
          ,試證明數(shù)列bn-1是等比數(shù)列;
          (2)求數(shù)列{anbn}的前n項(xiàng)和Sn
          (3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足
          1
          2
          a1+
          1
          22
          a2+
          1
          23
          a3+…+
          1
          2n
          an=2n+1
          則{an}的通項(xiàng)公式
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
          (1)若a1=
          54
          ,求an
          (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
          2n-1
          2n-1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案