日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有
          (1)求實數(shù)a的取值范圍;
          (2)對于給定的實數(shù)a,有一個最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立,則當(dāng)a為何值時,M(a)最小,并求出M(a)的最小值.
          【答案】分析:(1)先將用函數(shù)f(x)的表達(dá)式表示出來,再進(jìn)行化簡得:,由此式即可求得實數(shù)a的取值范圍;
          (2)本小題可以從a的范圍入手,考慮0<a<2與a≥2兩種情況,結(jié)合二次的象與性質(zhì),綜合運用分類討論思想與數(shù)形結(jié)合思想求解.
          解答:解:(1)∵
          =
          =
          ∵x1≠x2,∴a>0.∴實數(shù)a的取值范圍為(0,+∞).
          (2)∵,
          顯然f(0)=-2,對稱軸
          ①當(dāng),即0<a<2時,,且f[M(a)]=-4.
          令ax2+4x-2=-4,解得,
          此時M(a)取較大的根,即,
          ∵0<a<2,∴
          ②當(dāng),即a≥2時,,且f[M(a)]=4.
          令ax2+4x-2=4,解得
          此時M(a)取較小的根,即,
          ∵a≥2,∴.當(dāng)且僅當(dāng)a=2時,取等號.
          ∵-3<-1∴當(dāng)a=2時,M(a)取得最小值-3.
          點評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時,求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
           

          查看答案和解析>>

          同步練習(xí)冊答案