日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知斜三棱柱ABC-A′B′C′每條側(cè)棱長為3,底面為邊長2的正三角形,側(cè)面BCC′B′垂直于底面,且CC′=BC′.
          (1)求證AC′⊥BC;
          (2)求四棱錐C′-ABB′A′的體積.
          分析:(1)取BC中點D,連接AD、C'D,利用等腰三角形“三線合一”,可證出AD⊥BC且C'D⊥BC,結(jié)合線面垂直的判定定理,得BC⊥面ADC',從而得到BC⊥AC'.
          (2)根據(jù)面面垂直的性質(zhì),得到C'D⊥平面ABC,從而得到C'D是三棱柱ABC-A'B'C'和三棱錐C'-ABC的高,在Rt△C'D中,算出C'D的長,可得三棱柱ABC-A'B'C'和三棱錐C'-ABC的體積,將兩體積相減可得四棱錐C′-ABB′A′的體積.
          解答:解:(1)取BC中點D,連接AD、C'D,
          ∵正三角形ABC中,AD是中線,∴AD⊥BC,
          又∵△BCC'中,CC′=BC′,CD=DB
          ∴C'D⊥BC,
          ∵AD、C'D是平面ADC'內(nèi)的相交直線,
          ∴BC⊥面ADC'
          ∵AC'?面ADC',∴BC⊥AC'…(7分)
          (2)∵平面BCC′B′⊥平面ABC,平面BCC′B′∩平面ABC=BC,C'D⊥BC
          ∴C'D⊥平面ABC,
          Rt△C'D中,CD=1,CC'=3,∴C'D=
          C′C2-CD2
          =2
          2
          ,…(10分)
          ∴三棱柱ABC-A'B'C'的體積為V1=S△ABC•C'D=
          3
          4
          ×22×2
          2
          =2
          6

          三棱錐C'-ABC的體積V2=
          1
          3
          V1=
          2
          6
          3

          因此,四棱錐C′-ABB′A′的體積V=V1-V2=2
          6
          -
          2
          6
          3
          =
          4
          6
          3
          …(14分)
          點評:本題在三棱柱中證明線面垂直,并求四棱錐的體積,著重考查了線面垂直的判定與性質(zhì)和棱體、錐體的體積公式等知識,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C是邊長為2的菱形,∠B1BC=60°,側(cè)面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C為30°.
          (1)求證:AC⊥平面BB1C1C;
          (2)求AB1與平面BB1C1C所成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C與底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中點.
          (Ⅰ)求證:AB1∥平面A1CM;
          (Ⅱ)若AB1與平面BB1C1C所成的角為45°,求二面角B-AC-B1的大。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知斜三棱柱ABC-A1B1C1的底面邊長AB=2,BC=3,BC⊥面ABC1,CC1與面ABC所成的角為60°則斜三棱柱ABC-A1B1C1體積的最小值是
          9
          3
          9
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖所示,已知斜三棱柱ABC-A1B1C1的各棱長均為2,側(cè)棱與底面所成角為
          π3
          ,且側(cè)面ABB1A1垂直于底面.
          (1)判斷B1C與C1A是否垂直,并證明你的結(jié)論;
          (2)求四棱錐B-ACC1A1的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,點D為AC的中點,A1D⊥平面ABC,A1B⊥ACl
          (I)求證:AC1⊥AlC; 
          (Ⅱ)求二面角A-A1B-C的余弦值.

          查看答案和解析>>

          同步練習冊答案