日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線l:y=x+
          6
          ,圓O:x2+y2=5,橢圓E:
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)的離心率e=
          3
          3
          ,直線l被圓O截得的弦長與橢圓的短軸長相等.
          (Ⅰ)求橢圓E的方程;
          (Ⅱ)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證兩切線斜率之積為定值.
          (Ⅰ)設(shè)橢圓半焦距為c,圓心O到l的距離d=
          6
          2
          =
          3

          ∴直線l被圓O截得的弦長為2
          (
          5
          )2-(
          3
          )2
          =2
          5-3
          =2
          2
          ,
          由2b=2
          2
          ,解得b=
          2
          ,
          ∵橢圓E:
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)的離心率e=
          3
          3
          ,
          c
          a
          =
          3
          3

          a2-2
          a2
          =
          1
          3
          ,解得a2=3
          ∴橢圓E的方程為
          y2
          3
          +
          x2
          2
          =1
          ;
          (Ⅱ)證明:設(shè)P(x0,y0),過點P的橢圓E的切線l0的方程為y-y0=k(x-x0
          與橢圓方程聯(lián)立,消去y可得(3+2k2)x2+4k(y0-kx0)x+2(kx0-y02-6=0
          ∴△=[4k(y0-kx0)]2-4(3+2k2)[2(kx0-y02-6]=0
          ∴(2-x02)k2+2kx0y0-(y02-3)=0
          設(shè)滿足題意的橢圓的兩條切線的斜率分別為k1,k2
          ∴k1k2=-
          y02-3
          2-x02

          ∵P在圓O上,∴x02+y02=5,
          ∴k1k2=-
          y02-3
          2-x02
          =-1
          ∴兩切線斜率之積為定值-1.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l:y=x+k經(jīng)過橢圓C:
          x2
          a2
          +
          y2
          a2-1
          =1,(a>1)
          的右焦點F2,且與橢圓C交于A、B兩點,若以弦AB為直徑的圓經(jīng)過橢圓的左焦點F1,試求橢圓C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l:y=x+1和圓C:x2+y2=
          12
          ,則直線l與圓C的位置關(guān)系為
          相切
          相切

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l:y=-x+1與橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)相交于A、B兩點,且線段AB的中點為(
          2
          3
          , 
          1
          3
          )

          (1)求此橢圓的離心率.
          (2)若橢圓右焦點關(guān)于直線l:y=-x+1的對稱點在圓x2+y2=5上,求橢圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•菏澤一模)已知直線l:y=x+
          6
          ,圓O:x2+y2=5,橢圓E:
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)的離心率e=
          3
          3
          .直線l截圓O所得的弦長與橢圓的短軸長相等.
          (Ⅰ)求橢圓E的方程;
          (Ⅱ)過圓O上任意一點P作橢圓E的兩條切線.若切線都存在斜率,求證這兩條切線互相垂直.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l:y=x+2,與拋物線x2=y交于A(xA,yA),B(xB,yB)兩點,l與x軸交于點C(xC,0).
          (1)求證:
          1
          xA
          +
          1
          xB
          =
          1
          xC
          ;
          (2)求直線l與拋物線所圍平面圖形的面積;
          (3)某同學(xué)利用TI-Nspire圖形計算器作圖驗證結(jié)果時(如圖1所示),嘗試拖動改變直線l與拋物線的方程,發(fā)現(xiàn)
          1
          xA
          +
          1
          xB
          1
          xC
          的結(jié)果依然相等(如圖2、圖3所示),你能由此發(fā)現(xiàn)出關(guān)于拋物線的一般結(jié)論,并進(jìn)行證明嗎?精英家教網(wǎng)

          查看答案和解析>>

          同步練習(xí)冊答案