日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)滿足條件f(0)=0,f(-x+5)=f(x-3),且方程f(x)=x有等根.
          (Ⅰ)求f(x)的解析式;
          (Ⅱ)是否存在實(shí)數(shù)m,n,使f(x)的定義域和值域分別為[m,n]和[3m,3n]?如果存在,求出m,n的值;如果不存在,說明理由.
          分析:(1)現(xiàn)設(shè)函數(shù)解析式,再根據(jù)條件用待定系數(shù)法求解未知量,即可確定函數(shù)解析式
          (2)由已知條件確定原函數(shù)在[m.n]上的單調(diào)性,根據(jù)單調(diào)性列出方程組,解方程組即可
          解答:解:(1)∵f(x)是二次函數(shù),設(shè)f(x)=ax2+bx+c (a≠0)
          ∵f(0)=0
          ∴c=0
          ∴f(x)=ax2+bx
          又∵f(-x+5)=f(x-3)
          ∴函數(shù)f(x)的對(duì)稱軸為x=1
          -
          b
          2a
          =1

          又∵方程f(x)=x,即ax2+(b-1)x=0有等根
          ∴(b-1)2=0
          b=1,a=-
          1
          2

          f(x)=-
          1
          2
          x2+x

          (2)假設(shè)存在實(shí)數(shù)m,n,使f(x)的定義域和值域分別為[m,n]和[3m,3n]
          f(x)=-
          1
          2
          x2+x=-
          1
          2
          (x-1)2+
          1
          2
          1
          2

          3n≤
          1
          2

          n≤
          1
          6

          又函數(shù)f(x)的對(duì)稱軸為x=1,且開口向下
          ∴f(x)在[m,n]上單調(diào)遞增
          f(m)=3m
          f(n)=3n
          ,即
          -
          1
          2
          m2+m=3m
          -
          1
          2
          n2+n=3n

          又m<n
          ∴m=-4,n=0
          ∴存在實(shí)數(shù)m=-4,n=0滿足題意
          點(diǎn)評(píng):本題考查用待定系數(shù)法求二次函數(shù)的解析式,及二次函數(shù)的函數(shù)值和單調(diào)性.需注意條件的轉(zhuǎn)化.屬簡(jiǎn)單題
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
          (Ⅰ)求f(x)的表達(dá)式;
          (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過原點(diǎn),求f(x)的解析式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案