設(shè)橢圓(
)的兩個(gè)焦點(diǎn)是
和
(
),且橢圓
與圓
有公共點(diǎn).
(1)求的取值范圍;
(2)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為
,求橢圓的方程.
設(shè)橢圓(
)的兩個(gè)焦點(diǎn)是
和
(
),且橢圓
與圓
有公共點(diǎn).
(1)求的取值范圍;
(2)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為
,求橢圓的方程.
解:(1)由已知,,
∴ 方程組有實(shí)數(shù)解,從而
, ……(3分)
故, ……………………(4分)
所以, ……………………(6分)
即的取值范圍是
…………(7分)
(2)設(shè)橢圓上的點(diǎn)到一個(gè)焦點(diǎn)
的距離為
,
則
(
). ……………………(9分)
∵ ,∴ 當(dāng)
時(shí),
, ……(11分)
于是,,解得
.…………(13分)
∴ 所求橢圓方程為. …………(15分)
(直接給出的扣4分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求實(shí)數(shù)m的取值范圍;
(2)在直線l:y=x+2上存在一點(diǎn)E,使得?|EF1|+|EF2|取得最小值,求此最小值及此時(shí)橢圓的方程;
(3)在條件(2)下的橢圓方程,是否存在斜率為k(k≠0)的直線l與橢圓交于不同的兩點(diǎn)A、B,滿足=
,且使得過(guò)點(diǎn)N(0,-1)、Q的直線,有
·
=0?若存在,求出k的取值范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北荊門高二上學(xué)期期末教學(xué)質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
設(shè)橢圓(
)的兩個(gè)焦點(diǎn)是
和
(
),且橢圓
與圓
有公共點(diǎn).
(1)求的取值范圍;
(2)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;
(3)對(duì)(2)中的橢圓,直線
(
)與
交于不同的兩點(diǎn)
、
,若線段
的垂直平分線恒過(guò)點(diǎn)
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧實(shí)驗(yàn)、東北師大附、哈師大附中高三第二次模擬考試?yán)頂?shù)學(xué)卷(解析版) 題型:解答題
設(shè)橢圓C:的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)B1為其短軸的一個(gè)端點(diǎn),滿足
,
。
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)M 做兩條互相垂直的直線l1、l2設(shè)l1與橢圓交于點(diǎn)A、B,l2與橢圓交于點(diǎn)C、D,求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)設(shè)L是相應(yīng)于焦點(diǎn)F2的準(zhǔn)線,直線PF2與L相交于點(diǎn)Q.若=
2-.求直線PF2的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com