日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)y=f (x)是定義域?yàn)镽的奇函數(shù),且滿足f (x-2)=-f (x)對一切x∈R恒成立,當(dāng)-1≤x≤1時,f (x)=x3,則下列四個命題:
          ①f(x)是以4為周期的周期函數(shù).
          ②f(x)在[1,3]上的解析式為f (x)=(2-x)3
          ③f(x)在處的切線方程為3x+4y-5=0.
          ④f(x)的圖象的對稱軸中,有x=±1,其中正確的命題是( )
          A.①②③
          B.②③④
          C.①③④
          D.①②③④
          【答案】分析:利用函數(shù)的奇偶性和f (x-2)=-f (x),可以得出函數(shù)的周期為4,然后結(jié)合-1≤x≤1時,f (x)=x3,得到函數(shù)在[1,3]上的解析式為f (x)=(2-x)3,利用導(dǎo)數(shù)的幾何意義求得f (x)在處得切線的斜率,即可求得其切線方程.結(jié)合函數(shù)的奇偶性,周期性就可得到其圖象的對稱軸.
          解答:解:∵f (x-2)=-f (x)對一切x∈R恒成立,
          ∴f (x-4)=-f (x-2)=-[-f(x)]=f(x)∴f(x)是以4為周期的周期函數(shù).①對
          設(shè)1≤x≤3∴-1≤2-x≤1  又∵當(dāng)-1≤x≤1時,f (x)=x3,
          ∴f(2-x)=(2-x)3=-f(x)∴f (x)=(2-x)3  ②對
          ∴f'(x)=-3(2-x)2∴f'()=-=k
          又∵=(2-3=∴f (x)在處的切線方程為:y-=(x-)即:3x+4y-5=0.③對
          由f (x-2)=-f (x)=f(-x)知函數(shù)圖象的一條對稱軸為x=-1,又∵f(x)為奇函數(shù),其圖象關(guān)于y軸對稱 
          ∴f (x)的圖象的對稱軸中,有x=1,故④對.
          故選D.
          點(diǎn)評:本題綜合考查了考查了函數(shù)的奇偶性,周期性和圖象的對稱性,以及利用函數(shù)的性質(zhì)求函數(shù)在給定區(qū)間上的解析式的方法,同時考查了利用導(dǎo)數(shù)的幾何意義求其切線方程,是個中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          13、設(shè)函數(shù)y=f(x)存在反函數(shù)y=f-1(x),且函數(shù)y=x-f(x)的圖象過點(diǎn)(1,2),則函數(shù)y=f-1(x)-x的圖象一定過點(diǎn)
          (-1,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)是定義在R+上的函數(shù),并且滿足下面三個條件:①對任意正數(shù)x,y 都有f(xy)=f(x)+f(y);②當(dāng)x>1時,f(x)<0;③f(3)=-1.
          (1)求f(1),f(
          19
          )的值;
          (2)證明:f(x)在R+上是減函數(shù);
          (3)如果不等式分f(x)+f(2-x)<2成立,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù)是y=f′(x),稱εyx=f′(x)•
          x
          y
          為函數(shù)f(x)的彈性函數(shù).
          函數(shù)f(x)=2e3x彈性函數(shù)為
          3x
          3x
          ;若函數(shù)f1(x)與f2(x)的彈性函數(shù)分別為εf 1xεf 2x,則y=f1(x)+f2(x)(f1(x)+f2(x)≠0)的彈性函數(shù)為
           f1(x)ef1x+f2(x)ef2x  
          f1(x)+f2(x)
           f1(x)ef1x+f2(x)ef2x  
          f1(x)+f2(x)

          (用εf 1x,εf 2x,f1(x)與f2(x)表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù)fK(x)=
          f(x),f(x)≤k
          k,f(x)>k
          ,取函數(shù)f(x)=2-x-e-x,若對任意的x∈(-∞,+∞),恒有fK(x)=f(x),則K的最小值為
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義.對于給定的正數(shù)K,定義函數(shù)fk(x)=
          f(x),f(x)≥K
          K,f(x)<K
          ,取函數(shù)f(x)=2+x+e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則( 。

          查看答案和解析>>

          同步練習(xí)冊答案