日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•重慶)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且cosA=
          3
          5
          ,cosB=
          5
          13
          ,b=3
          ,則c=
          14
          5
          14
          5
          分析:由A和B都為三角形的內(nèi)角,且根據(jù)cosA及cosB的值,利用同角三角函數(shù)間的基本關(guān)系分別求出sinA和sinB的值,將sinC中的角C利用三角形的內(nèi)角和定理變形后,將各自的值代入求出sinC的值,由sinC,b及sinB的值,利用正弦定理即可求出c的值.
          解答:解:∵A和B都為三角形的內(nèi)角,且cosA=
          3
          5
          ,cosB=
          5
          13

          ∴sinA=
          1-cos2A
          =
          4
          5
          ,sinB=
          1-cos2B
          =
          12
          13
          ,
          ∴sinC=sin(A+B)=sinAcosB+cosAsinB=
          4
          5
          ×
          5
          13
          +
          3
          5
          ×
          12
          13
          =
          56
          65
          ,
          又b=3,
          ∴由正弦定理
          c
          sinC
          =
          b
          sinB
          得:c=
          bsinC
          sinB
          =
          56
          65
          12
          13
          =
          14
          5

          故答案為:
          14
          5
          點評:此題考查了同角三角函數(shù)間的基本關(guān)系,誘導(dǎo)公式,兩角和與差的正弦函數(shù)公式,以及正弦定理,熟練掌握定理及公式是解本題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (2012•重慶)設(shè)f(x)=alnx+
          1
          2x
          +
          3
          2
          x+1
          ,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
          (Ⅰ) 求a的值;
          (Ⅱ) 求函數(shù)f(x)的極值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•重慶)設(shè)平面點集A={(x,y)|(y-x)(y-
          1
          x
          )≥0},B={(x,y)|(x-1)2+(y-1)2≤1}
          ,則A∩B所表示的平面圖形的面積為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•重慶)設(shè)函數(shù)f(x)=Asin(ωx+φ)其中A>0,ω>0,-π<φ≤π)在x=
          π
          6
          處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為
          π
          2

          (Ⅰ)求f(x)的解析式;
          (Ⅱ)求函數(shù)g(x)=
          6cos4x-sin2x-1
          f(x+
          π
          6
          )
          的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•重慶)設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•重慶)設(shè)f(x)=4cos(ωx-
          π
          6
          )sinωx-cos(2ωx+π),其中ω>0.
          (Ⅰ)求函數(shù)y=f(x)的值域
          (Ⅱ)若f(x)在區(qū)間[-
          2
          ,
          π
          2
          ]
          上為增函數(shù),求ω的最大值.

          查看答案和解析>>

          同步練習冊答案