日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知f(x)=
          (1)判斷函數(shù)f(x)的奇偶性并證明;
          (2)證明f(x)是定義域內(nèi)的增函數(shù);
          (3)解不等式f(1﹣m)+f(1﹣m2)>0.

          【答案】
          (1)解:(x)是奇函數(shù),理由如下:

          ∵f(x)的定義域?yàn)镽,且f(﹣x)=﹣ =﹣f(x),

          ∴f(x)是奇函數(shù)


          (2)證明: f(x)= =1﹣

          設(shè)x1<x2,則

          f(x1)﹣f(x2)=1﹣ ﹣﹣(1﹣ )=

          ∵y=10x為增函數(shù),

          ∴當(dāng)x1<x2時(shí), <0,

          ∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).

          ∴f(x)在定義域上為增函數(shù).


          (3)解:不等式可化為f(1﹣m)>﹣f(1﹣m2

          由(1)知f(x)是奇函數(shù),

          ∴f(1﹣m)>f(m2﹣1)

          由(2)知f(x)在定義域上為增函數(shù),

          ∴1﹣m>m2﹣1

          解得﹣2<m<1


          【解析】(1)利用函數(shù)的奇偶性的定義判斷證明f(﹣x)=﹣ =﹣f(x),即可判定函數(shù)的奇偶性;(2)利用函數(shù)單調(diào)性的定義,設(shè)x1<x2 , 利用作差法證明f(x1)<f(x2),即可得出函數(shù)的單調(diào)性;(3)根據(jù)函數(shù)的單調(diào)性與奇偶性,化抽象函數(shù)為具體函數(shù),即可解不等式.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù))(…是自然對(duì)數(shù)的底數(shù)).

          (1)求單調(diào)區(qū)間;

          (2)討論在區(qū)間內(nèi)零點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,若輸出的 ,則判斷框內(nèi)填入的條件可以是(
          A.k≥7
          B.k>7
          C.k≤8
          D.k<8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,底面為直角梯形, 均為等邊三角形,且平面平面,點(diǎn)中點(diǎn).

          (1)求證: 平面;

          (2)若的面積為,求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】曲線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          (1)寫出的直角坐標(biāo)方程,并且用 (為直線的傾斜角, 為參數(shù))的形式寫出直線的一個(gè)參數(shù)方程;

          (2) 是否相交,若相交求出兩交點(diǎn)的距離,若不相交,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知雙曲線E的中心在坐標(biāo)原點(diǎn),離心率為2,E的右焦點(diǎn)與拋物線C:y2=8x的焦點(diǎn)重合,A、B是C的準(zhǔn)線與E的兩個(gè)交點(diǎn),則|AB|=(
          A.3
          B.6
          C.9
          D.12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于或等于90分為優(yōu)秀,90分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如表的列聯(lián)表.

          優(yōu)秀

          非優(yōu)秀

          總計(jì)

          甲班

          10

          乙班

          30

          合計(jì)

          100

          已知在全部100人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為
          (1)請(qǐng)完成如表的列聯(lián)表;
          (2)根據(jù)列聯(lián)表的數(shù)據(jù),有多大的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系“?
          (3)按分層抽樣的方法,從優(yōu)秀學(xué)生中抽出6名組成一個(gè)樣本,再?gòu)臉颖局谐槌?名學(xué)生,求恰好有1個(gè)學(xué)生在甲班的概率.
          參考公式和數(shù)據(jù):K2= ,其中n=a+b+c+d.
          下面的臨界值表供參考:

          p(K2≥k0

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k0

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知{an}是遞增的等差數(shù)列,前n項(xiàng)和為Sn , a1=1,且a1 , a2 , S3成等比數(shù)列.
          (1)求an及Sn;
          (2)求數(shù)列{ }的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= x3 (a∈R).
          (1)若a=1,求函數(shù)f(x)在[0,2]上的最大值;
          (2)若對(duì)任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案