日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•宜賓二模)如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分別是AC、AB上的點,且DE∥BC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2.
          (Ⅰ)求證:平面A1BC⊥平面A1DC;
          (Ⅱ)若CD=2,求BE與平面A1BC所成角的余弦值;
          (Ⅲ)當(dāng)D點在何處時,A1B的長度最小,并求出最小值.
          分析:(I)由題意,得DE⊥AD且DE⊥DC,從而DE⊥平面A1DC.結(jié)合DE∥BC,得BC⊥平面A1DC,由面面垂直判定定理即可得到平面A1BC⊥平面A1DC;
          (II)以D為原點,DE、DC、DA1分別為x軸、y軸、z軸建立如圖所示直角坐標(biāo)系,可得A1、B、C、E各點的坐標(biāo),從而得到向量
          BE
          A1C
          、
          CB
          的坐標(biāo),利用垂直向量數(shù)量積為零的方法建立方程組,解出
          m
          =(0,2,1)
          是平面A1BC的一個法向量,利用向量的夾角公式算出
          m
          、
          BE
          的夾角余弦值,即可得到BE與平面A1BC所成角的余弦值;
          (III)設(shè)CD=x,得A1D=6-x,從而得到A1、B的坐標(biāo),由兩點的距離公式得到用x表示|A1B|的式子,利用二次函數(shù)的性質(zhì)即可求出A1B的長度的最小值.
          解答:解:(Ⅰ)在圖1中△ABC中,DE∥BC,AC⊥BC,∴DE⊥AC
          由此可得圖2中,DE⊥AD,DE⊥DC,
          又∵A1D∩DC=D,∴DE⊥平面A1DC.
          ∵DE∥BC,∴BC⊥平面A1DC,
          又∵BC?平面A1BC,∴平面A1BC⊥平面A1DC…(4分)
          (Ⅱ)由(1)知A1D⊥DE,A1D⊥DC,DC⊥DE,
          故以D為原點,DE、DC、DA1分別為x、y、z軸建立直角坐標(biāo)系.
          則E(2,0,0),B(3,2,0),C(0,2,0),A1(0,0,4)
          BE
          =(-1,-2,0),
          A1C
          =(0,2,-4),
          CB
          =(3,0,0)
          ,
          設(shè)平面A1BC的一個法向量為
          m
          =(x,y,z)
          ,
          m
          A1C
          =2y-4z=0
          m
          CB
          =3x=0
          ,取y=2可得
          m
          =(0,2,1)
          ,
          設(shè)直線BE與平面A1BC所成角θ,
          可得sinθ=|cos<
          m
          ,
          BE
          >|
          =|
          -4
          5
          5
          |=
          4
          5

          即直線BE與平面A1BC所成角的余弦值為
          3
          5
          .…(8分)
          (Ⅲ)設(shè)CD=x,則A1D=6-x,
          在(II)的坐標(biāo)系下,可得B(3,x,0),A1(0,0,6-x),
          |A1B|=
          9+x2+(6-x)2
          =
          2x2-12x+45
          (0<x<6)
          ,
          ∵2x2-12x+45=2(x-3)2+27,∴當(dāng)x=3時,
          2x2-12x+45
          的最小值為3
          3

          由此可得當(dāng)x=3時,|A1B|最小值為3
          3
          .…(12分)
          點評:本題以平面圖形的折疊為例,求證線面垂直并求直線與平面所成角,著重考查了線面垂直的判定與性質(zhì)、利用空間向量研究線面所成角等知識,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•宜賓二模)函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<
          π
          2
          )的圖象如圖所示,為了得到f(x)的圖象,則只需將g(x)=sin2x的圖象( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•宜賓二模)已知函數(shù)f(x)=
          -x2-2x+a(x<0)
          f(x-1)(x≥0)
          ,且函數(shù)y=f(x)-x恰有3個不同的零點,則實數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•宜賓二模)已知集合A={1,2},集合B滿足A∪B={1,2,3},則集合B有( 。﹤.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•宜賓二模)在一個幾何體的三視圖中,正視圖和俯視圖如圖所示,則該幾何體的體積為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•宜賓二模)如果執(zhí)行如圖所示的框圖,輸入N=10,則輸出的數(shù)等于(  )

          查看答案和解析>>

          同步練習(xí)冊答案