日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•浙江)設(shè)a,b∈R,若x≥0時恒有0≤x4-x3+ax+b≤(x2-1)2,則ab等于
          -1
          -1
          分析:由題意,x≥0時恒有0≤x4-x3+ax+b≤(x2-1)2,考察(x2-1)2,發(fā)現(xiàn)當(dāng)x=1時,其值為0,再對照不等式左邊的0,可由兩邊夾的方式得到參數(shù)a,b滿足的方程,再令f(x)=x4-x3+ax+b,即f(x)≥0在x≥0恒成立,利用導(dǎo)數(shù)研究函數(shù)在x≥0的極值,即可得出參數(shù)所滿足的另一個方程,由此解出參數(shù)a,b的值,問題即可得解
          解答:解:驗證發(fā)現(xiàn),
          當(dāng)x=1時,將1代入不等式有0≤a+b≤0,所以a+b=0,
          當(dāng)x=0時,可得0≤b≤1,結(jié)合a+b=0可得-1≤a≤0
          令f(x)=x4-x3+ax+b,即f(1)=a+b=0
          又f′(x)=4x3-3x2+a,f′′(x)=12x2-6x,
          令f′′(x)>0,可得x>
          1
          2
          ,則f′(x)=4x3-3x2+a在[0,
          1
          2
          ]上減,在[
          1
          2
          ,+∞)上增
          又-1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0
          又x≥0時恒有0≤x4-x3+ax+b,結(jié)合f(1)=a+b=0知,1必為函數(shù)f(x)=x4-x3+ax+b的極小值點,也是最小值點
          故有f′(1)=1+a=0,由此得a=-1,b=1
          故ab=-1
          故答案為-1
          點評:本題考查函數(shù)恒成立的最值問題及導(dǎo)數(shù)綜合運(yùn)用題,由于所給的不等式較為特殊,可借助賦值法得到相關(guān)的方程直接求解,本題解法關(guān)鍵是觀察出不等式右邊為零時的自變量的值,及極值的確定,將問題靈活轉(zhuǎn)化是解題的關(guān)鍵
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•浙江)設(shè)
          e1
          、
          e2
          為單位向量,非零向量
          b
          =x
          e1
          +y
          e2
          ,x、y∈R.若
          e1
          、
          e2
          的夾角為30°,則
          |x|
          |
          b
          |
          的最大值等于
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•浙江)設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•浙江)設(shè)F為拋物線C:y2=4x的焦點,過點P(-1,0)的直線l交拋物線C于兩點A,B,點Q為線段AB的中點,若|FQ|=2,則直線l的斜率等于
          不存在
          不存在

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•浙江)設(shè)袋子中裝有a個紅球,b個黃球,c個藍(lán)球,且規(guī)定:取出一個紅球得1分,取出一個黃球2分,取出藍(lán)球得3分.
          (1)當(dāng)a=3,b=2,c=1時,從該袋子中任。ㄓ蟹呕,且每球取到的機(jī)會均等)2個球,記隨機(jī)變量ξ為取出此2球所得分?jǐn)?shù)之和.,求ξ分布列;
          (2)從該袋子中任。ㄇ颐壳蛉〉降臋C(jī)會均等)1個球,記隨機(jī)變量η為取出此球所得分?jǐn)?shù).若Eη=
          5
          3
          ,Dη=
          5
          9
          ,求a:b:c.

          查看答案和解析>>

          同步練習(xí)冊答案