(1)求直線PQ與平面ABCD所成角的正切值;
(2)求證:PQ⊥AD.
(1)解析:作PM⊥BC于M,連結(jié)QM,
∵AB⊥BC,∴PM∥AB,于是.∵AP=BQ,
∴GQ=CP.這樣可得.
∴QM∥GC.
∵GC⊥平面AC,
∴QM⊥平面AC.
∠QPM是PQ與平面AC所成的角,
QM=,
∴tan∠QPM=.
(2)證明:上面已證MP∥AB,QM∥GC,而AB⊥BC,QM⊥BC,
∴BC⊥MP,且BC⊥QM.
∴BC⊥平面PQM,因此BC⊥PQ.由AD∥BC可知PQ⊥AD.
小結(jié):(1)中求直線PQ與平面ABCD所成角的正切值的過程是“作、證、算”,即先作出∠QPM,然后再證明∠QPM是PQ與平面ABCD所成角,最后再計算其正切值.(2)中證PQ⊥AD,由于BC∥AD,于是就把證PQ⊥AD的問題轉(zhuǎn)化成了證明PQ⊥BC的問題.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com