日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          在△ABC中,角A,B,C所對的邊分別為a,b,c,m=(b-c,cosC),n=(a,cosA),m∥n,則cosA的值等于( )
          A.
          B.
          C.
          D.
          【答案】分析:根據兩個向量平行的條件,寫出坐標形式的表達式,得到關于三角形角和邊的關系,再由正弦定理變化整理,逆用兩角和的正弦公式,得到角A的余弦值.
          解答:解:∵
          ∴(b-c)cosA-acosC=0,
          再由正弦定理得sinBcosA=sinCcosA+cosCsinA
          sinBcosA=sin(C+A)=sinB,
          即cosA=
          故選C
          點評:通過向量的坐標表示實現(xiàn)向量問題代數化,注意與方程、函數等知識的聯(lián)系,一般的向量問題的處理有兩種思路,一種是純向量式的,另一種是坐標式,兩者互相補充.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
          3
          bc
          ,且b=
          3
          a
          ,則下列關系一定不成立的是( 。
          A、a=c
          B、b=c
          C、2a=c
          D、a2+b2=c2

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
          1114

          (1)求cosC的值;
          (2)若bcosC+acosB=5,求△ABC的面積.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
          3
          acosB

          (1)求角B的大小;
          (2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
          b
          a
          =
          sinB
          cosA

          (1)求∠A的值;
          (2)求用角B表示
          2
          sinB-cosC
          ,并求它的最大值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
          5
          ,b=3,sinC=2sinA
          ,則sinA=
           

          查看答案和解析>>

          同步練習冊答案