日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),直線l為圓O:x2+y2=b2的一條切線,且經(jīng)過橢圓的右焦點(diǎn),記橢圓的離心率為e.
          (1)若直線l的傾斜角為
          π
          6
          ,求e的值;
          (2)是否存在這樣的e,使得原點(diǎn)O關(guān)于直線l對(duì)稱的點(diǎn)恰好在橢圓C上?若存在,請(qǐng)求出e的值;若不存在,請(qǐng)說明理由.
          分析:(1)求出橢圓的右焦點(diǎn),進(jìn)而可設(shè)直線方程,利用直線l為圓O:x2+y2=b2的一條切線,可得一方程,利用橢圓的簡(jiǎn)單性質(zhì)a2=b2+c2,根據(jù)離心率公式即可求出e的值;
          (2)假設(shè)存在這樣的e,使得原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)恰好在橢圓C上,不妨設(shè)方程為x-my-c=0,從而利用原點(diǎn)O關(guān)于直線的對(duì)稱點(diǎn)在橢圓上,即可求解.
          解答:解:(1)設(shè)橢圓的右焦點(diǎn)為(c,0),c=
          a2-b2
          ,則直線的方程為x-
          3
          y-c=0

          ∵直線l為圓O:x2+y2=b2的一條切線
          b=
          1
          2
          c

          a2=b2+c2=
          5
          4
          c2

          e=
          c
          a
          =
          2
          5
          5

          (2)假設(shè)存在這樣的e,使得原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)恰好在橢圓C上,不妨設(shè)方程為x-my-c=0
          ∵直線l為圓O:x2+y2=b2的一條切線
          m2=
          c2
          b2
          -1

          設(shè)原點(diǎn)O關(guān)于直線的對(duì)稱點(diǎn)O′(x0,y0),則x0=
          2c
          m2+1
          ,y0=-
          2mc
          m2+1

          ∵O′在橢圓上,代入可得
          4c 2
          a2(m2+1) 2
          +
          4m 2c 2
          b2(m2+1) 2
          =1

          ∴b2=3c2
          m2=
          c2
          b2
          -1<0
          不成立
          故不存在這樣的e,使得原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)恰好在橢圓C上
          點(diǎn)評(píng):本題以橢圓為載體,考查橢圓的離心率,考查對(duì)稱問題,有一定的綜合性.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          1
          2
          ,且經(jīng)過點(diǎn)P(1,
          3
          2
          )

          (1)求橢圓C的方程;
          (2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的短軸長(zhǎng)為2
          3
          ,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
          (1)求橢圓C的方程;
          (2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
          DA
          DB
          ,若λ∈[
          3
          8
          ,
          1
          2
          ],求直線AB的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)經(jīng)過點(diǎn)A(1,
          3
          2
          ),且離心率e=
          3
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•房山區(qū)二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的長(zhǎng)軸長(zhǎng)是4,離心率為
          1
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)過點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過橢圓C的右頂點(diǎn)A,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的短軸長(zhǎng)為2,離心率為
          2
          2
          ,設(shè)過右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
          AP+BQ
          PQ
          ,若直線l的斜率k≥
          3
          ,則λ的取值范圍為
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案