日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,橢圓的離心率為,以橢圓的上頂點(diǎn)為圓心作圓,

          ,圓與橢圓在第一象限交于點(diǎn),在第二象限交于點(diǎn).

          (1)求橢圓的方程;

          (2)求的最小值,并求出此時(shí)圓的方程;

          (3)設(shè)點(diǎn)是橢圓上異于的一點(diǎn),且直線分別與軸交于點(diǎn)為坐標(biāo)原點(diǎn),求證:

          為定值.

          【答案】(1);(2);(3)詳見解析.

          【解析】試題分析:(1)依據(jù)題設(shè)條件求出參數(shù)即可;(2)依據(jù)題設(shè)條件及向量的數(shù)量積公式建立目標(biāo)函數(shù),再借助該函數(shù)取得最小值時(shí)求出圓的方程;(3)借助直線與橢圓的位置關(guān)系進(jìn)行分析推證:

          試題解析:

          (1) 由題意知, ,得.

          故橢圓的方程為.

          (2) 點(diǎn)與點(diǎn)關(guān)于軸對稱,設(shè),由點(diǎn)橢圓上,則,得

          .由題意知, ,當(dāng)時(shí), 取得最小值.此時(shí), ,故.又點(diǎn)在圓上,代入圓的方程,得.

          故圓的方程為.

          (3)設(shè),則的方程為.令,得.同理可得, . 故. ①

          都在橢圓上, ,代入①得, .即得為定值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,EPC中點(diǎn),FAB中點(diǎn).

          (Ⅰ)求證:BE∥平面PDF;

          (Ⅱ)求直線PD與平面PFB所成角的正切值;

          (Ⅲ)求三棱錐P﹣DEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】本小題滿分12分已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為,且.

          求此拋物線的方程;

          過點(diǎn)做直線交拋物線兩點(diǎn),求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】輪船從某港口將一些物品送到正航行的輪船上,在輪船出發(fā)時(shí),輪船位于港口北偏西且與相距20海里的處,并正以30海里的航速沿正東方向勻速行駛,假設(shè)輪船沿直線方向以海里/小時(shí)的航速勻速行駛,經(jīng)過小時(shí)與輪船相遇.

          (1)若使相遇時(shí)輪船航距最短,則輪船的航行速度大小應(yīng)為多少?

          (2)假設(shè)輪船的最高航速只能達(dá)到30海里/小時(shí),則輪船以多大速度及什么航行方向才能在最短時(shí)間與輪船相遇,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某大理石工廠初期花費(fèi)98萬元購買磨大理石刀具,第一年需要各種費(fèi)用12萬元,從第二年起,每年所需費(fèi)用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.

          (1)到第幾年末總利潤最大,最大值是多少?

          (2)到第幾年末年平均利潤最大,最大值是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓心為 的圓過點(diǎn),且圓心在直線 .

          (1)求圓心為的圓的標(biāo)準(zhǔn)方程;

          (2)過點(diǎn) 作圓的切線,求切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在[﹣1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[﹣1,0]時(shí)的解析式f(x)= (a∈R).
          (1)寫出f(x)在[0,1]上的解析式;
          (2)求f(x)在[0,1]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓與圓

          (1)若直線與圓相交于兩個(gè)不同點(diǎn),求的最小值;

          (2)直線上是否存在點(diǎn),滿足經(jīng)過點(diǎn)有無數(shù)對互相垂直的直線,它們分別與圓和圓相交,并且直線被圓所截得的弦長等于直線被圓所截得的弦長?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3萬元、2萬元,甲、乙產(chǎn)品都需要在兩種設(shè)備上加工,在每臺上加工1件甲所需工時(shí)分別是1、2加工1件乙所需工時(shí)分別為2、1 兩種設(shè)備每月有效使用臺時(shí)數(shù)分別為400500,如何安排生產(chǎn)可使收入最大?

          查看答案和解析>>

          同步練習(xí)冊答案