【題目】已知拋物線的焦點(diǎn)為
,點(diǎn)
在拋物線
上,且
。
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程及實(shí)數(shù)
的值;
(Ⅱ)直線過拋物線
的焦點(diǎn)
,且與拋物線
交于
兩點(diǎn),若
(
為坐標(biāo)原點(diǎn))的面積為
,求直線
的方程.
【答案】(1) ,
(2)
.
【解析】試題分析:(1)由拋物線的定義及點(diǎn)N的縱坐標(biāo)為1,得|NF|,結(jié)合|NF|=2,求出p的值,即可求拋物線C的方程;
(2)設(shè)直線l的方程為:y=kx+1,代入拋物線方程,利用弦長公式求出|AB|,再求出O到AB的距離,利用△AOB的面積為4,求出k的值,即可求直線l的方程.
試題解析:
(Ⅰ)因?yàn)閽佄锞過點(diǎn)
,
又因?yàn)?/span>,
,
,解得:
,
;
(Ⅱ)的焦點(diǎn)
,設(shè)所求的直線方程為:
由,消去
得:
因?yàn)橹本與拋物線
交于
兩點(diǎn),
,
設(shè),
,
所以的面積為
,
解得: ,所以所求直線
的方程為:
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1的方程為3x+4y﹣12=0.
(1)若直線l2與l1平行,且過點(diǎn)(﹣1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A(2,4)
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,o)滿足:存在圓M上的兩點(diǎn)P和Q,使得,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,動點(diǎn)滿足
成等差數(shù)列。
(1)求點(diǎn)的軌跡方程;
(2)對于軸上的點(diǎn)
,若滿足
,則稱點(diǎn)
為點(diǎn)
對應(yīng)的“比例點(diǎn)”,問:對任意一個確定的點(diǎn)
,它總能對應(yīng)幾個“比例點(diǎn)”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l:ax+ y﹣1=0與x,y軸的交點(diǎn)分別為A,B,直線l與圓O:x2+y2=1的交點(diǎn)為C,D.給出下列命題:p:a>0,S△AOB=
,q:a>0,|AB|<|CD|.則下面命題正確的是( )
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
).
(1)當(dāng)時,求函數(shù)
在
上的最大值和最小值;
(2)當(dāng)時,是否存在正實(shí)數(shù)
,當(dāng)
(
是自然對數(shù)底數(shù))時,函數(shù)
的最小值是3,若存在,求出
的值;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,0),B(0,2),,O為坐標(biāo)原點(diǎn).
(1),求sin 2θ的值;
(2)若,且θ∈(-π,0),求
與
的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年,京津冀等地?cái)?shù)城市指數(shù)“爆表”,尤其2015年污染最重.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散點(diǎn)圖知y與x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(Ⅱ)(。├茫á瘢┧蟮幕貧w方程,預(yù)測該市車流量為8萬輛時PM2.5的濃度;
(ⅱ)規(guī)定:當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù).)
參考公式:回歸直線的方程是,其中
,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com