日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分12分)

          設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn).

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交A,B且

          ?若存在,寫出該圓的方程,若不存在說明理由。

           

          七彩教育網(wǎng)(www.7caiedu.cn)

           

           

           

          【答案】

          (1)

          (2)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且

          【解析】

          試題分析:(1)因?yàn)闄E圓E: (a,b>0)過M(2,),N(,1)兩點(diǎn),

          所以解得所以橢圓E的方程為

          (2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,設(shè)該圓的切線方程為解方程組,即,

          則△=,即

          ,

           

          要使,需使,即,所以,所以,

          所以,所以,即,

          因?yàn)橹本為圓心在原點(diǎn)的圓的一條切線,

          所以圓的半徑為,,,

          所求的圓為,此時(shí)圓的切線都滿足,

          而當(dāng)切線的斜率不存在時(shí)切線為與橢圓的兩個(gè)交點(diǎn)為滿足,

          綜上, 存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且

          考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系。

          點(diǎn)評(píng):中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達(dá)定理。存在性問題,往往從假設(shè)存在出發(fā),運(yùn)用題中條件探尋得到存在的是否條件具備。(2)小題解答中,集合韋達(dá)定理,應(yīng)用平面向量知識(shí)證明了圓的存在性。

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          ( 本題滿分12分 )
          已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
          (I)求f(x)的最小正周期;
          (II)若x∈[0,
          π2
          ]
          ,求f(x)的最大值,最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

          設(shè),數(shù)列.

          (1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分12分,第1小題6分,第2小題6分)

          已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

          (1) 求AB;

          (2) 若,求實(shí)數(shù)a的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分12分)

          設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

          (1)求的解析式;

          (2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

          (本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

          如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面

          (Ⅰ)求證:⊥平面

          (Ⅱ)求二面角的大;

          (Ⅲ)求點(diǎn)到平面的距離.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案