日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
          (1)求C;
          (2)若 的面積為 ,求△ABC的周長(zhǎng).

          【答案】
          (1)

          解:(Ⅰ)已知等式利用正弦定理化簡(jiǎn)得:2cosC(sinAcosB+sinBcosA)=sinC,

          整理得:2cosCsin(A+B)=sinC,

          ∵sinC≠0,sin(A+B)=sinC

          ∴cosC=

          又0<C<π,

          ∴C=


          (2)

          解:由余弦定理得7=a2+b2﹣2ab ,

          ∴(a+b)2﹣3ab=7,

          ∵S= absinC= ab=

          ∴ab=6,

          ∴(a+b)2﹣18=7,

          ∴a+b=5,

          ∴△ABC的周長(zhǎng)為5+


          【解析】解三角形.(Ⅰ)已知等式利用正弦定理化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),根據(jù)sinC不為0求出cosC的值,即可確定出出C的度數(shù);(2)利用余弦定理列出關(guān)系式,利用三角形面積公式列出關(guān)系式,求出a+b的值,即可求△ABC的周長(zhǎng).此題考查了正弦、余弦定理,三角形的面積公式,以及三角函數(shù)的恒等變形,熟練掌握定理及公式是解本題的關(guān)鍵.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司即將推車(chē)一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買(mǎi)該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買(mǎi)意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買(mǎi)意愿弱;若得分不低于60分,說(shuō)明購(gòu)買(mǎi)意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

          (1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買(mǎi)該款手機(jī)與年齡有關(guān)?

          購(gòu)買(mǎi)意愿強(qiáng)

          購(gòu)買(mǎi)意愿弱

          合計(jì)

          20~40歲

          大于40歲

          合計(jì)

          (2)從購(gòu)買(mǎi)意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.

          附:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線關(guān)于軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過(guò)拋物線的焦點(diǎn).

          (1)求拋物線的標(biāo)準(zhǔn)方程;

          (2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線過(guò)軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知的展開(kāi)式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列.

          (1)求展開(kāi)式中的常數(shù)項(xiàng);

          (2)求展開(kāi)式中所有整式項(xiàng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,且sin(α+β)=3sin(α-β).

          (1)若tanα=2,求tanβ的值;

          (2)求tan(α-β)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知的展開(kāi)式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列.

          (1)求展開(kāi)式中的常數(shù)項(xiàng);

          (2)求展開(kāi)式中所有整式項(xiàng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得=80,=20,=184,=720.

          (1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程x;

          (2)判斷變量xy之間是正相關(guān)還是負(fù)相關(guān);

          (3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

          附:線性回歸方程x中,b, ,其中為樣本平均值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某同學(xué)在研究函數(shù)fx)=xR時(shí),分別給出下面幾個(gè)結(jié)論:

          ①等式f(-x)=-fx)在xR時(shí)恒成立;

          ②函數(shù)fx)的值域?yàn)椋?/span>-1,1);

          ③若x1x2,則一定有fx1)≠fx2);

          ④方程fx)=xR上有三個(gè)根.

          其中正確結(jié)論的序號(hào)有______.(請(qǐng)將你認(rèn)為正確的結(jié)論的序號(hào)都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).
          (1)討論f(x)的單調(diào)性;
          (2)證明:當(dāng)x>1時(shí),g(x)>0;
          (3)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案