日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈(0,e]時,f(x)=ax+lnx(其中e是自然對數(shù)的底數(shù),a∈R).
          (1)求f(x)的解析式;
          (2)設(shè)a=-1,,求證:當(dāng)x∈(0,e]時,恒成立;
          (3)是否存在負(fù)數(shù)a,使得當(dāng)x∈(0,e]時,f(x)的最大值是-3?如果存在,求出實數(shù)a的值;如果不存在,請說明理由.
          理科選修.
          【答案】分析:(1)設(shè)x∈[-e,0),則-x∈(0,e],從而可得f(-x)=-ax+ln(-x),結(jié)合f(x)為奇函數(shù),可求f(x),x∈[-e,0)
          (2)由a=-1時,可得f(x)=,g(x)=,而x∈(0,e]時,f(x)=-x+lnx
          =,結(jié)合導(dǎo)數(shù)可得f(x)max=f(1)=-1,,結(jié)合導(dǎo)數(shù)可得g(x)min=g(e)=,要證明當(dāng)x∈(0,e]時,恒成立,即證f(x)max即可
          (3)假設(shè)存在負(fù)數(shù)a滿足條件,由(1)可得,x∈(0,e],f(x)=ax+lnx,,令f′(x)>0可得,f′(x)<0可得 ,要判斷函數(shù)的單調(diào)區(qū)間,需要比較e與的大小,故需要討論:①,②兩種情況分別求解函數(shù)的最大值,進而可求a
          解答:解:(1)當(dāng)x∈[-e,0)時可得,-x∈(0,e]
          ∵x∈(0,e]時,f(x)=ax+lnx
          f(-x)=-ax+ln(-x)
          ∵函數(shù)f(x)為奇函數(shù)可得f(-x)=-f(x)
          -f(x)=-ax+ln(-x)
          f(x)=ax-ln(-x)
          f(x)=
          證明:(2)a=-1時,f(x)=,g(x)=,
          x∈(0,e]時,f(x)=-x+lnx
          =
          令f′(x)>0可得0<x<1,f′(x)<0可得1<x≤e
          函數(shù)f(x)在(0,1]單調(diào)遞增,在(1,e]單調(diào)遞減
          f(x)max=f(1)=-1
          ,由x∈(0,e]可得g′(x)≤0
          g(x)在(0,e]上單調(diào)遞減
          g(x)min=g(e)=
          -1<
          即f(x)max
          當(dāng)x∈(0,e]時,恒成立;
          解:(3)假設(shè)存在負(fù)數(shù)a滿足條件
          由(1)可得,x∈(0,e],f(x)=ax+lnx,
          令f′(x)>0可得,f′(x)<0可得
          ①若,即,則函數(shù)在(0,-]上單調(diào)遞增,在(-,e]上單調(diào)遞減
          =

          ②若 ,則函數(shù)在(0,e]單調(diào)遞增,則f(x)max=f(e)=ae+1=-3
          (舍)

          點評:本題主要考查了利用函數(shù)的奇偶性求解函數(shù)的解析式,及利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求解函數(shù)的最值,利用單調(diào)性證明不等式,解題的關(guān)鍵是熟練應(yīng)用函數(shù)的性質(zhì).是綜合性較強的試題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2x+2-x
          2
          ,g(x)=
          2x-2-x
          2
          ,
          (1)計算:[f(1)]2-[g(1)]2;
          (2)證明:[f(x)]2-[g(x)]2是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=x+
          a
          x
          的定義域為(0,+∞),且f(2)=2+
          2
          2
          .設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
          (1)求a的值.
          (2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
          (3)設(shè)O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)
          是f(x)圖象上的兩點,橫坐標(biāo)為
          1
          2
          的點P滿足2
          OP
          =
          OM
          +
          ON
          (O為坐標(biāo)原點).
          (Ⅰ)求證:y1+y2為定值;
          (Ⅱ)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,且n≥2,求Sn;
          (Ⅲ)已知an=
          1
          6
          ,                          n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
          (1)求證:y1+y2為定值;
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )(n∈N*,N≥2),求Sn
          (3)在(2)的條件下,若an=
          1
          6
           ,n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          (n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

          查看答案和解析>>

          同步練習(xí)冊答案