日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標(biāo)平面中,△ABC的兩個頂點(diǎn)為A(0,-1),B(0,1)平面內(nèi)兩點(diǎn)G、M同時滿足①,②==,③
          (1)求頂點(diǎn)C的軌跡E的方程
          (2)設(shè)P、Q、R、N都在曲線E上,定點(diǎn)F的坐標(biāo)為(,0),已知,=0.求四邊形PRQN面積S的最大值和最小值.
          【答案】分析:(1)根據(jù),以,分別得到解析式,聯(lián)立即可求出頂點(diǎn)C的軌跡E的方程.
          (2)根據(jù)題意設(shè)出直線PQ的方程,將之代入(1)的方程中,運(yùn)用設(shè)而不求韋達(dá)定理,求出|PQ|,然后根據(jù)RN⊥PQ,求出S的解析式.最后即可求出四邊形PRQN面積S的最大值和最小值.
          解答:解:(1)設(shè)C(x,y),
          ,
          由①知,
          ∴G為△ABC的重心,
          ∴G(
          由②知M是△ABC的外心,
          ∴M在x軸上.
          由③知M(,0),


          化簡整理得:(x≠0)
          (2)F(,0)恰為的右焦點(diǎn)
          設(shè)PQ的斜率為k≠0且k≠±,
          則直線PQ的方程為y=k(x-

          設(shè)P(x1,y1),Q(x2,y2
          則x1+x2=,x1•x2=;
          則|PQ|=
          =
          =
          ∵RN⊥PQ,把k換成
          得|RN|=
          ∴S=|PQ|•|RN|
          ==
          ≥2,
          ≥16,
          ≤S<2,(當(dāng)k=±1時取等號)
          又當(dāng)k不存在或k=0時S=2
          綜上可得≤S≤2,
          ∴Smax=2,Smin=
          點(diǎn)評:本題考查直線與圓錐曲線的綜合問題,平面向量與共線向量,向量數(shù)量積的運(yùn)算,以及求點(diǎn)的軌跡方程.通過運(yùn)用設(shè)而不求韋達(dá)定理,方便的求出坐標(biāo)的關(guān)系,考查了對知識的綜合運(yùn)用能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)平面中,△ABC的兩個頂點(diǎn)A,B的坐標(biāo)分別為A(-1,0)B(1,0),平面內(nèi)兩點(diǎn)G,M同時滿足下列條件:①
          GA
          +
          GB
          +
          GC
          =
          0
          ;②|
          MA
          |=|
          MB
          |=|
          MC
          |;③
          GM
          AB

          (1)求△ABC的頂點(diǎn)C的軌跡方程;
          (2)過點(diǎn)P(3,0)的直線l與(1)中軌跡交于不同的兩點(diǎn)E,F(xiàn),求△OEF面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)平面中,已知點(diǎn)P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整數(shù),對平面上任一點(diǎn)A0,記A1為A0關(guān)于點(diǎn)P1的對稱點(diǎn),A2為A1關(guān)于點(diǎn)P2的對稱點(diǎn),…,An為An-1關(guān)于點(diǎn)Pn的對稱點(diǎn).
          (1)求向量
          A0A2
          的坐標(biāo);
          (2)當(dāng)點(diǎn)A0在曲線C上移動時,點(diǎn)A2的軌跡是函數(shù)y=f(x)的圖象,其中f(x)是以3為周期的周期函數(shù),且當(dāng)x∈(0,3]時,f(x)=lgx.求以曲線C為圖象的函數(shù)在(1,4]上的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)平面中,已知點(diǎn)P(0,1),Q(2,3),對平面上任意一點(diǎn)B0,記B1為B0關(guān)于P的對稱點(diǎn),B2為B1關(guān)于Q的對稱點(diǎn),B3為B2關(guān)于P的對稱點(diǎn),B4為B3關(guān)于Q的對稱點(diǎn),…,Bi為Bi-1關(guān)于P的對稱點(diǎn),Bi+1為Bi關(guān)于Q的對稱點(diǎn),Bi+2為Bi+1關(guān)于P的對稱點(diǎn)(i≥1,i∈N)….則
          B0B10
          =
          (20,20)
          (20,20)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•寧波模擬)在直角坐標(biāo)平面中,△ABC的兩個頂點(diǎn)A、B的坐標(biāo)分別為A(-1,0),B(1,0),平面內(nèi)兩點(diǎn)G、M同時滿足下列條件:
          (1)
          GA
          +
          GB
          +
          GC
          =
          O

          (2)|
          MA
          |=|
          MB
          |=|
          MC
          |

          (3)
          GM
          AB

          則△ABC的頂點(diǎn)C的軌跡方程為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2005•金山區(qū)一模)在直角坐標(biāo)平面中,若F1、F2為定點(diǎn),P為動點(diǎn),a>0為常數(shù),則“|PF1|+|PF2|=2a”是“點(diǎn)P的軌跡是以F1、F2為焦點(diǎn),以2a為長軸的橢圓”的( 。

          查看答案和解析>>

          同步練習(xí)冊答案