日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四面體ABCD中,AD^平面BCD,BC^CDAD=2,BD=2MAD的中點(diǎn),PBM的中點(diǎn),點(diǎn)Q在線段AC上,且AQ=3QC

          (Ⅰ)證明:PQ∥平面BCD;

          (Ⅱ)若二面角CBMD的大小為60°,求ÐBDC的大。

          【命題意圖】本題考查空間點(diǎn)、線、面位置關(guān)系,二面角等基礎(chǔ)知識(shí),空間向量的應(yīng)用,同時(shí)考查空間想象能力和運(yùn)算求解能力。

             【答案解析】

          (Ⅰ)取BD的中點(diǎn)O,在線段CD上取點(diǎn)F,使得DF=3FC,連接OP,OFFQ

          因?yàn)?i>AQ=3QC,所以

          QFAD,且QF=AD

          因?yàn)?i>O,P分別為BD,BM的中點(diǎn),所以OP是△BDM的中位線,所以

          OPDM,且OP=DM

          又點(diǎn)MAD的中點(diǎn),所以

          OPAD,且OP=AD

          從而

          OPFQ,且OP=FQ

          所以四邊形OPQF是平行四邊形,故

          PQOF

          PQË平面BCD,OFÌ平面BCD,所以

          PQ∥平面BCD

             (Ⅱ)作CG^BD于點(diǎn)G,作GH^BM于點(diǎn)HG,連接CH,則CH^BM,所以ÐCHG為二面角的平面角。設(shè)ÐBDC=θ

             在Rt△BCD中,

          CD=BDcos θ=2cos θ,

          CG=CDsin θ=2cos θsin θ,

          BG=BCsin θ=2sin2θ

             在Rt△BDM中,

          HG==

              在Rt△CHG中,

          tanÐCHG=

              所以

          tan q=

              從而

          q=60°

          即ÐBDC=60°.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•武漢模擬)如圖,在四面體A-BCD中,AB=AD=
          2
          ,BD=2,DC=1
          ,且BD⊥DC,二面角A-BD-C大小為60°.
          (1)求證:平面ABC上平面BCD;
          (2)求直線CD與平面ABC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•浙江)如圖,在四面體A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
          2
          .M是AD的中點(diǎn),P是BM的中點(diǎn),點(diǎn)Q在線段AC上,且AQ=3QC.
          (1)證明:PQ∥平面BCD;
          (2)若二面角C-BM-D的大小為60°,求∠BDC的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在四面體A-BCD中,有CB=CD,平面ABD⊥平面BCD,點(diǎn)E、F分別為BD,AB的中點(diǎn),MN∥平面ABD.
          (1)求證:平面ABD⊥平面EFC;
          (2)如圖,求證:直線MN∥直線GH.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2015屆浙江杭州七校高二上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿分14分)如圖,在四面體A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點(diǎn).

          (1)證明:平面ABC平面ADC;

          (2)若ÐBDC=60°,求二面角C−BM−D的大小.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案