證明時,假設(shè)當(dāng)
時成立,則當(dāng)
時,左邊增加的項數(shù)為(
)
A. B.
C.
D.
科目:高中數(shù)學(xué) 來源:2013屆內(nèi)蒙古巴彥淖爾市中學(xué)高二下期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題
對于不等式某同學(xué)應(yīng)用數(shù)學(xué)歸納法證明的過程如下:
(1)當(dāng)時,
,不等式成立
(2)假設(shè)時,不等式成立,即
那么時,
不等式成立根據(jù)(1)(2)可知,對于一切正整數(shù)不等式都成立。上述證明方法( )
A.過程全部正確 B.驗證不正確
C.歸納假設(shè)不正確 D.從到
的推理不正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知,(其中
)
⑴求及
;
⑵試比較與
的大小,并說明理由.
【解析】第一問中取,則
;
…………1分
對等式兩邊求導(dǎo),得
取,則
得到結(jié)論
第二問中,要比較與
的大小,即比較:
與
的大小,歸納猜想可得結(jié)論當(dāng)
時,
;
當(dāng)時,
;
當(dāng)時,
;
猜想:當(dāng)時,
運用數(shù)學(xué)歸納法證明即可。
解:⑴取,則
;
…………1分
對等式兩邊求導(dǎo),得,
取,則
。 …………4分
⑵要比較與
的大小,即比較:
與
的大小,
當(dāng)時,
;
當(dāng)時,
;
當(dāng)時,
;
…………6分
猜想:當(dāng)時,
,下面用數(shù)學(xué)歸納法證明:
由上述過程可知,時結(jié)論成立,
假設(shè)當(dāng)時結(jié)論成立,即
,
當(dāng)時,
而
∴
即時結(jié)論也成立,
∴當(dāng)時,
成立。
…………11分
綜上得,當(dāng)時,
;
當(dāng)時,
;
當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三第五次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求的通項公式;
(Ⅱ) 設(shè) (
N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時,由
得
. ……2分
若存在由
得
,
從而有,與
矛盾,所以
.
從而由得
得
. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一.
……10分
證法三:(利用對偶式)設(shè),
,
則.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時,
,命題成立;
②假設(shè)時,命題成立,即
,
則當(dāng)時,
即
即
故當(dāng)時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com