日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某汽車公司生產(chǎn)新能源汽車,20193-9月份銷售量(單位:萬輛)數(shù)據(jù)如下表所示:

          月份

          3

          4

          5

          6

          7

          8

          9

          銷售量

          (萬輛)

          3.008

          2.401

          2.189

          2.656

          1.665

          1.672

          1.368

          1)某企業(yè)響應(yīng)國家號召,購買了6輛該公司生產(chǎn)的新能源汽車,其中四月份生產(chǎn)的4輛,五月份生產(chǎn)的2輛,6輛汽車隨機(jī)地分配給AB兩個部門使用,其中A部門用車4輛,B部門用車2.現(xiàn)了解該汽車公司今年四月份生產(chǎn)的所有新能源汽車均存在安全隱患,需要召回.求該企業(yè)B部門2輛車中至多有1輛車被召回的概率;

          2)經(jīng)分析可知,上述數(shù)據(jù)近似分布在一條直線附近.設(shè)關(guān)于的線性回歸方程為,根據(jù)表中數(shù)據(jù)可計算出,試求出的值,并估計該廠10月份的銷售量.

          【答案】12;該廠10月份銷售量估計為1.151萬輛.

          【解析】

          設(shè)某企業(yè)購買的6輛新能源汽車,4月份生產(chǎn)的4輛車為,;5月份生產(chǎn)的2輛車為,,列出部門2輛車所有可能的情況和至多有1輛車是四月份生產(chǎn)的所包含的情況,代入古典概型概率計算公式求解即可.

          求出,由線性回歸方程過樣本中心點代入線性回歸方程即可求出,然后把代入回歸方程求解即可.

          1)設(shè)某企業(yè)購買的6輛新能源汽車,4月份生產(chǎn)的4輛車為,,,;5月份生產(chǎn)的2輛車為,6輛汽車隨機(jī)地分配給兩個部門.

          部門2輛車可能為(,),(,),(,),(,),(,),(),(,),(,),(),(),(),(,),(,,(,),(,)共15種情況;

          其中,至多有1輛車是四月份生產(chǎn)的情況有:(,),(,),(,),(,),(,),(,),(,),(,),()共9種,

          所以該企業(yè)部門2輛車中至多有1輛車被召回的概率為.

          2)由題意得,.

          因為線性回歸方程過樣本中心點,所以,解得.

          當(dāng)時,

          即該廠10月份銷售量估計為1.151萬輛.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,,直線,,與曲線所圍成的曲邊梯形的面積為.其中,且.

          1)當(dāng)時,恒成立,求實數(shù)的值;

          2)請指出,,的大小,并且證明;

          3)求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下圖是一塊平行四邊形園地,經(jīng)測量,.擬過線段上一點 設(shè)計一條直路(點在四邊形的邊上,不計直路的寬度),將該園地分為面積之比為的左,右兩部分分別種植不同花卉.設(shè)(單位:m.

          1)當(dāng)點與點重合時,試確定點的位置;

          2)求關(guān)于的函數(shù)關(guān)系式;

          3)試確定點的位置,使直路的長度最短.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

          1)求曲線的直角坐標(biāo)方程;

          2)設(shè)曲線與直線交于點,點的坐標(biāo)為(3,1),求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),則下列關(guān)于函數(shù)的說法,不正確的是(

          A.的圖象關(guān)于對稱

          B.上有2個零點

          C.在區(qū)間上單調(diào)遞減

          D.函數(shù)圖象向右平移個單位,所得圖像對應(yīng)的函數(shù)為奇函數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點PQ分別為A1B1,BC的中點.

          (1)求異面直線BPAC1所成角的余弦值;

          (2)求直線CC1與平面AQC1所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD1,PAAB ,點E是棱PB的中點.

          1)求異面直線ECPD所成角的余弦值;

          2)求二面角B-EC-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線和圓,拋物線的焦點為.

          1)求的圓心到的準(zhǔn)線的距離;

          2)若點在拋物線上,且滿足, 過點作圓的兩條切線,記切點為,求四邊形的面積的取值范圍;

          3)如圖,若直線與拋物線和圓依次交于四點,證明:的充要條件是直線的方程為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義域是一切實數(shù)的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù))使得對任意實數(shù)都成立,則稱是一個-伴隨函數(shù),有下列關(guān)于-伴隨函數(shù)的結(jié)論:①是常數(shù)函數(shù)唯一一個-伴隨函數(shù);②-伴隨函數(shù)至少有一個零點;③是一個-伴隨函數(shù);其中正確結(jié)論的個數(shù)(

          A.0B.1C.2D.3

          查看答案和解析>>

          同步練習(xí)冊答案