日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知雙曲線C: 的離心率是 ,其一條準(zhǔn)線方程為x=
          (Ⅰ)求雙曲線C的方程;
          (Ⅱ)設(shè)雙曲線C的左右焦點(diǎn)分別為A,B,點(diǎn)D為該雙曲線右支上一點(diǎn),直線AD與其左支交于點(diǎn)E,若 ,求實數(shù)λ的取值范圍.

          【答案】解:(I)由題意可得,
          ∴a= ,c=2,b=1,
          ∴雙曲線的方程為
          (II)由(I)知A(﹣2,0),設(shè)D(x0 , y0),E(x1 , y1
          則由 ,
          可得x1= ,y1=
          ∵E在雙曲線上
          2﹣( 2=1
          (﹣2+λx0)2﹣3(λy0)2=3(1+λ)2
          ∵D在雙曲線
          ∴可得x0= ,
          ∴λ≤
          ∵D在雙曲線的左支,點(diǎn)D在右支
          ∴0>λ≤
          【解析】(I)由題意可得 ,可求a,c,由b2=c2﹣a2可求b,可求雙曲線的方程(II)由(I)知A(﹣2,0),設(shè)D(x0 , y0),E(x1 , y1)則由 ,可得x1= ,y1= ,結(jié)合E,D在雙曲線上,可求x0 , 結(jié)合雙曲線的性質(zhì)可求λ的取值范圍.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x )(a>0,x>1).
          (1)證明函數(shù)f(x)為偶函數(shù);
          (2)若函數(shù)f(x)﹣g(x)只有一個零點(diǎn),求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=b﹣f(2﹣x),其中b∈R,若函數(shù)y=f(x)﹣g(x)恰有4個零點(diǎn),則b的取值范圍是(
          A.( ,+∞)
          B.(﹣∞,
          C.(0,
          D.( ,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= 的定義域為集合A,函數(shù)g(x)=( x(﹣1≤x≤0)的值域為集合B.
          (1)求A∩B;
          (2)若集合C=[a,2a﹣1],且C∪B=B,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】六個面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于(

          A.2(AB2+AD2+AA12
          B.3(AB2+AD2+AA12
          C.4(AB2+AD2+AA12
          D.4(AB2+AD2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=lg(ax﹣bx)(a>1>b>0).
          (1)求f(x)的定義域;
          (2)若f(x)在(1,+∞)上遞增且恒取正值,求a,b滿足的關(guān)系式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四棱錐P﹣ABCD,底面ABCD是∠A=60°、邊長為a的菱形,又PD⊥底ABCD,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).
          (1)證明:DN∥平面PMB;
          (2)證明:平面PMB⊥平面PAD;
          (3)求點(diǎn)A到平面PMB的距離.

          查看答案和解析>>

          同步練習(xí)冊答案